Skip to main content
Log in

Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Humans have a number of nonclassical major histocompatibility complex (MHC) class I molecules that are quite divergent from the classical ones, and that may have separated from the classical lineage in pre-mammalian times. To estimate when in evolution the respective nonclassical lineages separated from the classical lineage, we first identified “phylogenetic marker motifs” within the evolution of classical MHC class I; the selected motifs are rather specific for and rather stably inherited within clades of species. Distribution of these motifs in nonclassical MHC class I molecules indicates that the lineage including the nonclassical MHC class I molecules CD1 and PROCR separated from the classical lineage before the emergence of tetrapod species, and that the human nonclassical MHC class I molecules FCGRT, MIC/ULBP/RAET, HFE, MR1, and ZAG show similarity with classical MHC class I at the avian/reptilian level. An MR1-like α1 exon sequence was identified in turtle. Our system furthermore indicates that the lineage UT, hitherto only found in non-eutherian mammals, predates tetrapod existence, and we identified UT genes in reptiles. If only accepting wide distribution of a lineage among extant species as true evidence for ancientness, the oldest identified nonclassical MHC class I lineage remains the fish-specific lineage Z, which was corroborated in the present study by finding both Z and classical-type MHC class I sequences in a primitive fish, the bichir. In short, we gained important new insights into the evolution of classical MHC class I motifs and the probable time of origin of nonclassical MHC class I lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams EJ, Luoma AM (2013) The adaptable major histocompatibility complex (MHC) fold: structure and function of nonclassical and MHC class I-like molecules. Annu Rev Immunol 31:529–561

    Article  PubMed  CAS  Google Scholar 

  • Adamski FM, Demmer J (1999) Two stages of increased IgA transfer during lactation in the marsupial, trichosurus vulpecula (Brushtail possum). J Immunol 162:6009–6015

    PubMed  CAS  Google Scholar 

  • Adhikari R, Elliott T (2003) The role of calnexin and calreticulin in MHC class I assembly. In: Eggleton P, Michalak M (eds) Calreticulin. Molecular Biology Intelligence Unit. Springer, Boston, pp 85–93

    Google Scholar 

  • Amemiya CT, Saha NR, Zapata A (2007) Evolution and development of immunological structures in the lamprey. Curr Opin Immunol 19:535–541

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araki T, Gejyo F, Takagaki K et al (1988) Complete amino acid sequence of human plasma Zn-alpha 2-glycoprotein and its homology to histocompatibility antigens. Proc Natl Acad Sci U S A 85:679–683

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci U S A 91:6259–6263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benton MJ, Donoghue PC (2007) Paleontological evidence to date the tree of life. Mol Biol Evol 24:26–53

    Article  PubMed  CAS  Google Scholar 

  • Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, Tisdale MJ, Trayhurn P (2004) Zinc-alpha2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci U S A 101:2500–2505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512

    Article  PubMed  CAS  Google Scholar 

  • Bos DH, Waldman B (2006) Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis. Mol Biol Evol 23:137–143

    Article  PubMed  CAS  Google Scholar 

  • Boudinot P, Mondot S, Jouneau L, Teyton L, Lefranc MP, Lantz O (2016) Restricting nonclassical MHC genes coevolve with TRAV genes used by innate-like T cells in mammals. Proc Natl Acad Sci U S A 113:E2983–E2992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyington JC, Motyka SA, Schuck P, Brooks AG, Sun PD (2000) Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand. Nature 405:537–543

    Article  PubMed  CAS  Google Scholar 

  • Braud VM, Allan DS, McMichael AJ (1999) Functions of nonclassical MHC and non-MHC-encoded class I molecules. Curr Opin Immunol 11:100–108

    Article  PubMed  CAS  Google Scholar 

  • Briles WE, Goto RM, Auffray C, Miller MM (1993) A polymorphic system related to but genetically independent of the chicken major histocompatibility complex. Immunogenetics 37:408–414

    Article  PubMed  CAS  Google Scholar 

  • Broughton RE, Betancur-R. R, Li C, Arratia G, Ortí G (2013) Multi-locus phylogenetic analysis reveals the pattern and tempo of bony fish evolution. PLOS Curr Tree Life. 2013 Apr 16. Edition 1. https://doi.org/10.1371/currents.tol.2ca8041495ffafd0c92756e75247483e

  • Brown JH, Jardetzky TS, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364(6432):33–39

    Article  PubMed  CAS  Google Scholar 

  • Burmeister WP, Huber AH, Bjorkman PJ (1994) Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372:379–383

    Article  PubMed  CAS  Google Scholar 

  • Calabi F, Milstein C (1986) A novel family of human major histocompatibility complex-related genes not mapping to chromosome 6. Nature 323:540–543

    Article  PubMed  CAS  Google Scholar 

  • Chappell P, Meziane e K, Harrison M et al (2015) Expression levels of MHC class I molecules are inversely correlated with promiscuity of peptide binding. Elife 4:e05345

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daar AS, Fuggle SV, Fabre JW, Ting A, Morris PJ (1984) The detailed distribution of HLA-A, B, C antigens in normal human organs. Transplantation 38:287–292

    Article  PubMed  CAS  Google Scholar 

  • Delker SL, West AP Jr, McDermott L, Kennedy MW, Bjorkman PJ (2004) Crystallographic studies of ligand binding by Zn-alpha2-glycoprotein. J Struct Biol 148:205–213

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra JM, Köllner B, Aoyagi K, Sawamoto Y, Kuroda A, Ototake M, Nakanishi T, Fischer U (2003) The rainbow trout classical MHC class I molecule Onmy-UBA*501 is expressed in similar cell types as mammalian classical MHC class I molecules. Fish Shellfish Immunol 14:1–23

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra JM, Grimholt U, Leong J, Koop BF, Hashimoto K (2013) Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evol Biol 13:260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dirscherl H, Yoder JA (2014) Characterization of the Z lineage major histocompatability complex class I genes in zebrafish. Immunogenetics 66:185–198

    Article  PubMed  CAS  Google Scholar 

  • Dvir H, Wang J, Ly N, Dascher CC, Zajonc DM (2010) Structural basis for lipid-antigen recognition in avian immunity. J Immunol 184:2504–2511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckle SB, Birkinshaw RW, Kostenko L et al (2014) A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J Exp Med 211:1585–1600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fan QR, Long EO, Wiley DC (2001) Crystal structure of the human natural killer cell inhibitory receptor KIR2DL1-HLA-Cw4 complex. Nat Immunol 2:452–460

    Article  PubMed  CAS  Google Scholar 

  • Feder JN, Gnirke A, Thomas W et al (1996) A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nat Genet 13:399–408

    Article  PubMed  CAS  Google Scholar 

  • Fisette O, Wingbermühle S, Tampé R, Schäfer LV (2016) Molecular mechanism of peptide editing in the tapasin-MHC I complex. Sci Rep 6:19085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flajnik MF, Kasahara M, Shum BP, Salter-Cid L, Taylor E, Du Pasquier L (1993) A novel type of class I gene organization in vertebrates: a large family of non-MHC-linked class I genes is expressed at the RNA level in the amphibian Xenopus. EMBO J 12:4385–4396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fukudome K, Esmon CT (1994) Identification, cloning, and regulation of a novel endothelial cell protein C/activated protein C receptor. J Biol Chem 269:26486–26491

    PubMed  CAS  Google Scholar 

  • Gadola SD, Zaccai NR, Harlos K, Shepherd D, Castro-Palomino JC, Ritter G, Schmidt RR, Jones EY, Cerundolo V (2002) Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 3:721–726

    Article  PubMed  CAS  Google Scholar 

  • Gao GF, Tormo J, Gerth UC, Wyer JR, McMichael AJ, Stuart DI, Bell JI, Jones EY, Jakobsen BK (1997) Crystal structure of the complex between human CD8alpha(alpha) and HLA-A2. Nature 387:630–634

    Article  PubMed  CAS  Google Scholar 

  • Garcia KC, Degano M, Pease LR, Huang M, Peterson PA, Teyton L, Wilson IA (1998) Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279:1166–1172

    Article  PubMed  CAS  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299

    Article  PubMed  CAS  Google Scholar 

  • Gold MC, McLaren JE, Reistetter JA et al (2014) MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J Exp Med 211:1601–1610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grimholt U, Tsukamoto K, Azuma T, Leong J, Koop BF, Dijkstra JM (2015) A comprehensive analysis of teleost MHC class I sequences. BMC Evol Biol 15:32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halaby DM, Poupon A, Mornon J (1999) The immunoglobulin fold family: sequence analysis and 3D structure comparisons. Protein Eng 12:563–571

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Nakanishi T, Kurosawa Y (1990) Isolation of carp genes encoding major histocompatibility complex antigens. Proc Natl Acad Sci U S A 87:6863–6867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hashimoto K, Hirai M, Kurosawa Y (1995) A gene outside the human MHC related to classical HLA class I genes. Science 269:693–695

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K, Okamura K, Yamaguchi H, Ototake M, Nakanishi T, Kurosawa Y (1999) Conservation and diversification of MHC class I and its related molecules in vertebrates. Immunol Rev 167:81–100

    Article  PubMed  CAS  Google Scholar 

  • He Y, Bjorkman PJ (2011) Structure of FcRY, an avian immunoglobulin receptor related to mammalian mannose receptors, and its complex with IgY. Proc Natl Acad Sci U S A 108:12431–12436

    Article  PubMed  PubMed Central  Google Scholar 

  • Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci U S A 78:3824–3828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hughes AL, Nei M (1989) Evolution of the major histocompatibility complex: independent origin of nonclassical class I genes in different groups of mammals. Mol Biol Evol 6:559–579

    PubMed  CAS  Google Scholar 

  • Hughes AL (1991) Evolutionary origin and diversification of the mammalian CD1 antigen genes. Mol Biol Evol 8:185–201

    PubMed  CAS  Google Scholar 

  • Hughes AL, Nei M (1993) Evolutionary relationships of the classes of major histocompatibility complex genes. Immunogenetics 37:337–346

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Watanabe Y, Sumasu M, Nagata T (2002) A family of MHC class I-like genes located in the vicinity of the mouse leukocyte receptor complex. Proc Natl Acad Sci U S A 99(21):13687–13692

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kasahara M, Yoshida S (2012) Immunogenetics of the NKG2D ligand gene family. Immunogenetics 64:855–867

    Article  PubMed  CAS  Google Scholar 

  • Kasahara M, Sutoh Y (2015) Comparative genomics of the NKG2D ligand gene family. Immunol Rev 267:72–87

    Article  PubMed  CAS  Google Scholar 

  • Katz G, Markel G, Mizrahi S, Arnon TI, Mandelboim O (2001) Recognition of HLA-Cw4 but not HLA-Cw6 by the NK cell receptor killer cell Ig-like receptor two-domain short tail number 4. J Immunol 166:7260–7267

    Article  PubMed  CAS  Google Scholar 

  • Kaufman JF, Auffray C, Korman AJ, Shackelford DA, Strominger J (1984) The class II molecules of the human and murine major histocompatibility complex. Cell 36:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kaufman J, Andersen R, Avila D, Engberg J, Lambris J, Salomonsen J, Welinder K, Skjødt K (1992) Different features of the MHC class I heterodimer have evolved at different rates. Chicken B-F and beta 2-microglobulin sequences reveal invariant surface residues. J Immunol 148:1532–1546

    PubMed  CAS  Google Scholar 

  • Kaufman J (2015) Co-evolution with chicken class I genes. Immunol Rev 267:56–71

    Article  PubMed  CAS  Google Scholar 

  • Kern PS, Teng MK, Smolyar A, Liu JH, Liu J, Hussey RE, Spoerl R, Chang HC, Reinherz EL, Wang JH (1998) Structural basis of CD8 coreceptor function revealed by crystallographic analysis of a murine CD8alphaalpha ectodomain fragment in complex with H-2Kb. Immunity 9:519–530

    Article  PubMed  CAS  Google Scholar 

  • Kiryu I, Dijkstra JM, Sarder RI, Fujiwara A, Yoshiura Y, Ototake M (2005) New MHC class Ia domain lineages in rainbow trout (Oncorhynchus mykiss) which are shared with other fish species. Fish Shellfish Immunol 18:243–254

    Article  PubMed  CAS  Google Scholar 

  • Kjer-Nielsen L, Patel O, Corbett AJ et al (2012) MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491:717–723

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Camp S, Collen T et al (2007) Structures of an MHC class I molecule from B21 chickens illustrate promiscuous peptide binding. Immunity 27:885–899

    Article  PubMed  CAS  Google Scholar 

  • Kondo M, Maruoka T, Otsuka N, Kasamatsu J, Fugo K, Hanzawa N, Kasahara M (2010) Comparative genomic analysis of mammalian NKG2D ligand family genes provides insights into their origin and evolution. Immunogenetics 62:441–450

    Article  PubMed  CAS  Google Scholar 

  • Krasnec KV, Papenfuss AT, Miller RD (2016) The UT family of MHC class I loci unique to non-eutherian mammals has limited polymorphism and tissue specific patterns of expression in the opossum. BMC Immunol 17:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kruiswijk CP, Hermsen T, Fujiki K, Dixon B, Savelkoul HF, Stet RJ (2004) Analysis of genomic and expressed major histocompatibility class Ia and class II genes in a hexaploid Lake Tana African ‘large’ barb individual (Barbus intermedius). Immunogenetics 55:770–781

    Article  PubMed  CAS  Google Scholar 

  • Lebrón JA, Bennett MJ, Vaughn DE, Chirino AJ, Snow PM, Mintier GA, Feder JN, Bjorkman PJ (1998) Crystal structure of the hemochromatosis protein HFE and characterization of its interaction with transferrin receptor. Cell 93:111–123

    Article  PubMed  Google Scholar 

  • Madden DR, Gorga JC, Strominger JL, Wiley DC (1991) The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 353:321–325

    Article  PubMed  CAS  Google Scholar 

  • Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ, Robinson H, Natarajan K, Myers NB, Hansen TH, Margulies DH (2012) The peptide-receptive transition state of MHC class I molecules: insight from structure and molecular dynamics. J Immunol 189:1391–1399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mage MG, Dolan MA, Wang R, Boyd LF, Revilleza MJ, Robinson H, Natarajan K, Myers NB, Hansen TH, Margulies DH (2013) A structural and molecular dynamics approach to understanding the peptide-receptive transition state of MHC-I molecules. Mol Immunol 55:123–125

    Article  PubMed  CAS  Google Scholar 

  • Martin LH, Calabi F, Milstein C (1986) Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci U S A 83:9154–9158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maruoka T, Tanabe H, Chiba M, Kasahara M (2005) Chicken CD1 genes are located in the MHC: CD1 and endothelial protein C receptor genes constitute a distinct subfamily of class-I-like genes that predates the emergence of mammals. Immunogenetics 57:590–600

    Article  PubMed  CAS  Google Scholar 

  • Matsumura M, Fremont DH, Peterson PA, Wilson IA (1992) Emerging principles for the recognition of peptide antigens by MHC class I molecules. Science 257:927–934

    Article  PubMed  CAS  Google Scholar 

  • Miller MM, Wang C, Parisini E et al (2005) Characterization of two avian MHC-like genes reveals an ancient origin of the CD1 family. Proc Natl Acad Sci U S A 102:8674–8679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miska KB, Harrison GA, Hellman L, Miller RD (2002) The major histocompatibility complex in monotremes: an analysis of the evolution of Mhc class I genes across all three mammalian subclasses. Immunogenetics 54:381–393

    Article  PubMed  CAS  Google Scholar 

  • Mohan Rao LV, Esmon CT, Pendurthi UR (2014) Endothelial cell protein C receptor: a multiliganded and multifunctional receptor. Blood 124:1553–1562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H, Trautwein N, Stevanović S, Elliott T, Deane JE, Boyle LH (2017) TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. Elife 6

  • Nössner E, Parham P (1995) Species-specific differences in chaperone interaction of human and mouse major histocompatibility complex class I molecules. J Exp Med 181:327–337

    Article  PubMed  Google Scholar 

  • Oganesyan V, Oganesyan N, Terzyan S, Qu D, Dauter Z, Esmon NL, Esmon CT (2002) The crystal structure of the endothelial protein C receptor and a bound phospholipid. J Biol Chem 277:24851–24854

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, McKinney EC, Criscitiello MF, Flajnik MF (2002) Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 168:771–781

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Shiina T, Lohr RL, Hosomichi K, Pollin TI, Heist EJ, Suzuki S, Inoko H, Flajnik MF (2011) Primordial linkage of β2-microglobulin to the MHC. J Immunol 186:3563–3571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okamura K, Ototake M, Nakanishi T, Kurosawa Y, Hashimoto K (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7:777–790

    Article  PubMed  CAS  Google Scholar 

  • Papenfuss AT, Feng ZP, Krasnec K, Deakin JE, Baker ML, Miller RD (2015) Marsupials and monotremes possess a novel family of MHC class I genes that is lost from the eutherian lineage. BMC Genomics 16:535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegueroles C, Laurie S, Albà MM (2013) Accelerated evolution after gene duplication: a time-dependent process affecting just one copy. Mol Biol Evol 30:1830–1842

    Article  PubMed  CAS  Google Scholar 

  • Poggi A, Zocchi MR (2007) Human natural killer lymphocytes through the engagement of natural cytotoxicity receptors and NKG2D can trigger self-aggression. Autoimmun Rev 6:295–299

    Article  PubMed  CAS  Google Scholar 

  • Rammensee HG (1995) Chemistry of peptides associated with MHC class I and class II molecules. Curr Opin Immunol 7:85–96

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JR, Cook RG (2005) MHC class Ib molecules bridge innate and acquired immunity. Nat Rev Immunol 5:459–471

    Article  PubMed  CAS  Google Scholar 

  • Rohrlich PS, Fazilleau N, Ginhoux F et al (2005) Direct recognition by alphabeta cytolytic T cells of Hfe, a MHC class Ib molecule without antigen-presenting function. Proc Natl Acad Sci U S A 102:12855–12860

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell ST, Tisdale MJ (2012) Role of β-adrenergic receptors in the anti-obesity and anti-diabetic effects of zinc-α2-glycoprotien (ZAG). Biochim Biophys Acta 1821:590–599

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Sültmann H, Mayer WE, Klein J (2000) Mhc class I gene of African lungfish. Immunogenetics 51:491–495

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Salomonsen J, Sørensen MR, Marston DA, Rogers SL, Collen T, van Hateren A, Smith AL, Beal RK, Skjødt K, Kaufman J (2005) Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proc Natl Acad Sci U S A 102:8668–8673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 219:277–319

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MM, Townson SA, Andreucci AJ et al (2013) Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure 21:1966–1978

    Article  PubMed  CAS  Google Scholar 

  • Shum BP, Guethlein L, Flodin LR, Adkison MA, Hedrick RP, Nehring RB, Stet RJ, Secombes C, Parham P (2001) Modes of salmonid MHC class I and II evolution differ from the primate paradigm. J Immunol 166:3297–3308

    Article  PubMed  CAS  Google Scholar 

  • Simister NE, Rees AR (1985) Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur J Immunol 15:733–738

    Article  PubMed  CAS  Google Scholar 

  • Simister NE, Mostov KE (1989) An Fc receptor structurally related to MHC class I antigens. Nature 337:184–187

    Article  PubMed  CAS  Google Scholar 

  • Simmonds RE, Lane DA (1999) Structural and functional implications of the intron/exon organization of the human endothelial cell protein C/activated protein C receptor (EPCR) gene: comparison with the structure of CD1/major histocompatibility complex alpha1 and alpha2 domains. Blood 94:632–641

    PubMed  CAS  Google Scholar 

  • Smith KJ, Reid SW, Harlos K, McMichael AJ, Stuart DI, Bell JI, Jones EY (1996) Bound water structure and polymorphic amino acids act together to allow the binding of different peptides to MHC class I HLA-B53. Immunity 4:215–228

    Article  PubMed  CAS  Google Scholar 

  • Stapleton NM, Einarsdóttir HK, Stemerding AM, Vidarsson G (2015) The multiple facets of FcRn in immunity. Immunol Rev 268:253–268

    Article  PubMed  CAS  Google Scholar 

  • Sültmann H, Mayer WE, Figueroa F, O'hUigin C, Klein J (1993) Zebrafish Mhc class II alpha chain-encoding genes: polymorphism, expression, and function. Immunogenetics 38:408–420

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Townsend A, Bodmer H (1989) Antigen recognition by class I-restricted T lymphocytes. Annu Rev Immunol 7:601–624

    Article  PubMed  CAS  Google Scholar 

  • Trägårdh L, Wiman K, Rask L, Peterson PA (1978) Amino acid sequence homology between HLA-A,B,C antigens, beta2-microglobulin and immunoglobulins. Scand J Immunol 8:563–568

    Article  PubMed  Google Scholar 

  • Tsukamoto K, Deakin JE, Graves JA, Hashimoto K (2013) Exceptionally high conservation of the MHC class I-related gene, MR1, among mammals. Immunogenetics 65:115–124

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, Frickey T, Taylor J, Meyer A (2002) Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes. Gene 295:205–211

    Article  PubMed  Google Scholar 

  • Van Rhijn I, Godfrey DI, Rossjohn J, Moody DB (2015) Lipid and small-molecule display by CD1 and MR1. Nat Rev Immunol 15:643–654

    Article  PubMed  CAS  Google Scholar 

  • Vujić M (2014) Molecular basis of HFE-hemochromatosis. Front Pharmacol 5:42

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Perera TV, Ford HL, Dascher CC (2003) Characterization of a divergent non-classical MHC class I gene in sharks. Immunogenetics 55:57–61

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Natarajan K, Margulies DH (2009) Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol 183(4):2554–2564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wearsch PA, Peaper DR, Cresswell P (2011) Essential glycan-dependent interactions optimize MHC class I peptide loading. Proc Natl Acad Sci U S A 108(12):4950–4955

    Article  PubMed  PubMed Central  Google Scholar 

  • Western AH, Eckery DC, Demmer J, Juengel JL, McNatty KP, Fidler AE (2003) Expression of the FcRn receptor (alpha and beta) gene homologues in the intestine of suckling brushtail possum (Trichosurus vulpecula) pouch young. Mol Immunol 39:707–717

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Wang C, Wang T et al (2015) Analysis of the reptile CD1 genes: evolutionary implications. Immunogenetics 67:337–346

    Article  PubMed  CAS  Google Scholar 

  • Zahid H, Miah L, Lau AM, Brochard L, Hati D, Bui TT, Drake AF, Gor J, Perkins SJ, McDermott LC (2016) Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites. Biochem J 473:43–54

    Article  PubMed  CAS  Google Scholar 

  • Zajonc DM, Elsliger MA, Teyton L, Wilson IA (2003) Crystal structure of CD1a in complex with a sulfatide self antigen at a resolution of 2.15 A. Nat Immunol 4:808–815

    Article  PubMed  CAS  Google Scholar 

  • Zajonc DM, Striegl H, Dascher CC, Wilson IA (2008) The crystal structure of avian CD1 reveals a smaller, more primordial antigen-binding pocket compared to mammalian CD1. Proc Natl Acad Sci U S A 105:17925–17930

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng Z, Castaño AR, Segelke BW, Stura EA, Peterson PA, Wilson IA (1997) Crystal structure of mouse CD1: an MHC-like fold with a large hydrophobic binding groove. Science 277:339–345

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Wearsch PA, Zhu Y, Leonhardt RM, Cresswell P (2011) A role for UDP-glucose glycoprotein glucosyltransferase in expression and quality control of MHC class I molecules. Proc Natl Acad Sci U S A 108:4956–4961

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Chen Y, Qi J, Gao F, Liu Y, Liu J, Zhou X, Kaufman J, Xia C, Gao GF (2012) Narrow groove and restricted anchors of MHC class I molecule BF2*0401 plus peptide transporter restriction can explain disease susceptibility of B4 chickens. J Immunol 189:4478–4487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou Z, Nomura M, Takihara Y, Yasunaga T, Shimada K (1996) Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules. J Biochem 119:319–328

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 22580213 for Johannes M. Dijkstra, and by Internal funding from the Norwegian Veterinary Institute for Unni Grimholt. UG collected most of the sequences, analyzed their genomic organization, and made Supplementary text 1, Supplementary Fig. 1, and Supplementary Table 1, and assisted in writing the paper. TY retrieved and assembled MHC class I sequences of primitive fishes using SRA datasets. JMD made the sequence alignments, analyzed the phylogeny, established the marker motif system, and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes M. Dijkstra or Unni Grimholt.

Electronic supplementary material

ESM 1

(PDF 800 kb)

ESM 2

(PDF 260 kb)

ESM 3

(PDF 554 kb)

ESM 4

(DOCX 98 kb)

ESM 5

(PDF 155 kb)

ESM 6

(PDF 384 kb)

ESM 7

(PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dijkstra, J.M., Yamaguchi, T. & Grimholt, U. Conservation of sequence motifs suggests that the nonclassical MHC class I lineages CD1/PROCR and UT were established before the emergence of tetrapod species. Immunogenetics 70, 459–476 (2018). https://doi.org/10.1007/s00251-017-1050-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-017-1050-2

Keywords

Navigation