Skip to main content

Advertisement

Log in

Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset

  • Review
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Type II natural killer T cells (NKT) are a subset of the innate-like CD1d-restricted lymphocytes that are reactive to lipid antigens. Unlike the type I NKT cells, which express a semi-invariant TCR, type II NKT cells express a broader TCR repertoire. Additionally, other features, such as their predominance over type I cells in humans versus mice, the nature of their ligands, CD1d/lipid/TCR binding, and modulation of immune responses, distinguish type II NKT cells from type I NKT cells. Interestingly, it is the self-lipid-reactivity of type II NKT cells that has helped define their physiological role in health and in disease. The discovery of sulfatide as one of the major antigens for CD1d-restricted type II NKT cells in mice has been instrumental in the characterization of these cells, including the TCR repertoire, the crystal structure of the CD1d/lipid/TCR complex, and their function. Subsequently, several other glycolipids and phospholipids from both endogenous and microbial sources have been shown to activate type II NKT cells. The activation of a specific subset of type II NKT cells following administration with sulfatide or lysophosphatidylcholine (LPC) leads to engagement of a dominant immunoregulatory pathway associated with the inactivation of type I NKT cells, conventional dendritic cells, and inhibition of the proinflammatory Th1/Th17 cells. Thus, type II NKT cells have been shown to be immunosuppressive in autoimmune diseases, inflammatory liver diseases, and in cancer. Knowing their relatively higher prevalence in human than type I NKT cells, understanding their biology is imperative for health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ambrosino E et al. (2007) Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J Immunol 179:5126–5136

    Article  CAS  PubMed  Google Scholar 

  • Arora P et al. (2014) A single subset of dendritic cells controls the cytokine bias of natural killer T cell responses to diverse glycolipid antigens. Immunity 40:105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrenberg P, Halder R, Dai Y, Maricic I, Kumar V (2010) Oligoclonality and innate-like features in the TCR repertoire of type II NKT cells reactive to a beta-linked self-glycolipid. Proc Natl Acad Sci U S A 107:10984–10989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrenberg P, Maricic I, Kumar V (2011) Sulfatide-mediated activation of type II natural killer T cells prevents hepatic ischemic reperfusion injury in mice. Gastroenterology 140:646–655

    Article  CAS  PubMed  Google Scholar 

  • Bai L et al. (2012) The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vdelta1 TCR. Eur J Immunol 42:2505–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay K, Marrero I, Kumar V (2016) NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol 13:1–10

    Article  CAS  Google Scholar 

  • Baron JL, Gardiner L, Nishimura S, Shinkai K, Locksley R, Ganem D (2002) Activation of a nonclassical NKT cell subset in a transgenic mouse model of hepatitis B virus infection. Immunity 16:583–594

    Article  CAS  PubMed  Google Scholar 

  • Barral P, Polzella P, Bruckbauer A, van Rooijen N, Besra GS, Cerundolo V, Batista FD (2010) CD169(+) macrophages present lipid antigens to mediate early activation of iNKT cells in lymph nodes. Nat Immunol 11:303–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behar SM, Podrebarac TA, Roy CJ, Wang CR, Brenner MB (1999) Diverse TCRs recognize murine CD1. J Immunol 162:161–167

    CAS  PubMed  Google Scholar 

  • Benlagha K, Weiss A, Beavis A, Teyton L, Bendelac A (2000) In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J Exp Med 191:1895–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berntman E, Rolf J, Johansson C, Anderson P, Cardell SL (2005) The role of CD1d-restricted NK T lymphocytes in the immune response to oral infection with Salmonella typhimurium. Eur J Immunol 35:2100–2109

    Article  CAS  PubMed  Google Scholar 

  • Blomqvist M et al. (2009) Multiple tissue-specific isoforms of sulfatide activate CD1d-restricted type II NKT cells. Eur J Immunol 39:1726–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brennan PJ, Brigl M, Brenner MB (2013) Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 13:101–117

    Article  CAS  PubMed  Google Scholar 

  • Brennan PJ et al. (2011) Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat Immunol 12:1202–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brigl M et al. (2011) Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J Exp Med 208:1163–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardell S, Tangri S, Chan S, Kronenberg M, Benoist C, Mathis D (1995) CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med 182:993–1004

    Article  CAS  PubMed  Google Scholar 

  • Chang DH et al. (2008a) Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112:1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang WS et al. (2008b) Cutting edge: programmed death-1/programmed death ligand 1 interaction regulates the induction and maintenance of invariant NKT cell anergy. J Immunol 181:6707–6710

    Article  CAS  PubMed  Google Scholar 

  • Chiu YH, Jayawardena J, Weiss A, Lee D, Park SH, Dautry-Varsat A, Bendelac A (1999) Distinct subsets of CD1d-restricted T cells recognize self-antigens loaded in different cellular compartments. J Exp Med 189:103–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YH et al. (2002) Multiple defects in antigen presentation and T cell development by mice expressing cytoplasmic tail-truncated CD1d. Nat Immunol 3:55–60. doi:10.1038/ni740

    Article  CAS  PubMed  Google Scholar 

  • Chun T et al. (2003) CD1d-expressing dendritic cells but not thymic epithelial cells can mediate negative selection of NKT cells. J Exp Med 197:907–918. doi:10.1084/jem.20021366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duarte N, Stenstrom M, Campino S, Bergman ML, Lundholm M, Holmberg D, Cardell SL (2004) Prevention of diabetes in nonobese diabetic mice mediated by CD1d-restricted non classical NKT cells. J Immunol 173:3112–3118

    Article  CAS  PubMed  Google Scholar 

  • Durante-Mangoni E et al. (2004) Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. J Immunol 173:2159–2166

    Article  CAS  PubMed  Google Scholar 

  • Duthie MS, Kahn M, White M, Kapur RP, Kahn SJ (2005) Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect Immun 73:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Exley MA, He Q, Cheng O, Wang RJ, Cheney CP, Balk SP, Koziel MJ (2002) Cutting edge: compartmentalization of Th1-like non invariant CD1d-reactive T cells in hepatitis C virus-infected liver. J Immunol 168:1519–1523

    Article  CAS  PubMed  Google Scholar 

  • Exley MA et al. (2001) CD1d-reactive T-cell activation leads to amelioration of disease caused by diabetogenic encephalomyocarditis virus. J Leukoc Biol 69:713–718

    CAS  PubMed  Google Scholar 

  • Fais F et al. (2004) CD1d is expressed on B-chronic lymphocytic leukemia cells and mediates alpha-galactosylceramide presentation to natural killer T lymphocytes. Int J Cancer 109:402–411

    Article  CAS  PubMed  Google Scholar 

  • Faveeuw C et al. (2002) Antigen presentation by CD1d contributes to the amplification of Th2 responses to Schistosoma mansoni glycoconjugates in mice. J Immunol 169:906–912

    Article  CAS  PubMed  Google Scholar 

  • Fox LM et al. (2009) Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol 7:e1000228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuss IJ et al. (2014) IL-13Ralpha2-bearing, type II NKT cells reactive to sulfatide self-antigen populate the mucosa of ulcerative colitis. Gut 63:1728–1736. doi:10.1136/gutjnl-2013-305671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapin L, Godfrey DI, Rossjohn J (2013) Natural killer T cell obsession with self-antigens. Curr Opin Immunol 25:168–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girardi E, Zajonc DM (2012) Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Immunol Rev 250:167–179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girardi E, Maricic I, Wang J, Mac TT, Iyer P, Kumar V, Zajonc DM (2012) Type II natural killer T cells use features of both innate-like and conventional T cells to recognize sulfatide self antigens. Nat Immunol 13:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB (2015) The burgeoning family of unconventional T cells. Nat Immunol 16:1114–1123

    Article  CAS  PubMed  Google Scholar 

  • Grishina ZV, Viryasova GM, Romanova YM, Sud’ina GF (2015) Polymorphonuclear leukocyte apoptosis is accelerated by sulfatides or sulfatides-treated Salmonella typhimurium bacteria. Biomed Res Int 2015:381232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halder RC, Aguilera C, Maricic I, Kumar V (2007) Type II NKT cell-mediated anergy induction in type I NKT cells prevents inflammatory liver disease. J Clin Invest 117:2302–2312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hams E, Locksley RM, McKenzie AN, Fallon PG (2013) Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J Immunol 191:5349–5353

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M et al. (2011) SOCS1 regulates type I/type II NKT cell balance by regulating IFNgamma signaling. Int Immunol 23:165–176

    Article  CAS  PubMed  Google Scholar 

  • Izhak L et al. (2013) Delicate balance among three types of T cells in concurrent regulation of tumor immunity. Cancer Res 73:1514–1523. doi:10.1158/0008-5472.CAN-12-2567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahng A, Maricic I, Aguilera C, Cardell S, Halder RC, Kumar V (2004) Prevention of autoimmunity by targeting a distinct, non invariant CD1d-reactive T cell population reactive to sulfatide. J Exp Med 199:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayawardena-Wolf J, Benlagha K, Chiu YH, Mehr R, Bendelac A (2001) CD1d endosomal trafficking is independently regulated by an intrinsic CD1d-encoded tyrosine motif and by the invariant chain. Immunity 15:897–908

    Article  CAS  PubMed  Google Scholar 

  • Kadri N et al. (2012) CD4(+) type II NKT cells mediate ICOS and programmed death-1-dependent regulation of type 1 diabetes. J Immunol 188:3138–3149

    Article  CAS  PubMed  Google Scholar 

  • Kain L et al. (2014) The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41:543–554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanamori M, Tasumi Y, Iyoda T, Ushida M, Inaba K (2012) Sulfatide inhibits alpha-galactosylceramide presentation by dendritic cells. Int Immunol 24:129–136

    Article  CAS  PubMed  Google Scholar 

  • Kawano T et al. (1997) CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides. Science 278:1626–1629

    Article  CAS  PubMed  Google Scholar 

  • Kim EY, Lynch L, Brennan PJ, Cohen NR, Brenner MB (2015) The transcriptional programs of iNKT cells. Semin Immunol 27:26–32

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choi EY, Chung DH (2007) Donor bone marrow type II (non-valpha14Jalpha18 CD1d-restricted) NKT cells suppress graft-versus-host disease by producing IFN-gamma and IL-4. J Immunol 179:6579–6587

    Article  CAS  PubMed  Google Scholar 

  • Kinjo Y, Kitano N, Kronenberg M (2013) The role of invariant natural killer T cells in microbial immunity. J Infect Chemother 19:560–570

    Article  CAS  PubMed  Google Scholar 

  • Kinjo Y et al. (2011) Invariant natural killer T cells recognize glycolipids from pathogenic Gram-positive bacteria. Nat Immunol 12:966–974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlden S, Georas SN (2014) The autotaxin-LPA axis emerges as a novel regulator of lymphocyte homing and inflammation. J Immunol 192:851–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko SY et al. (2007) Mediastinal lymph node CD8alpha-DC initiate antigen presentation following intranasal coadministration of alpha-GalCer. Eur J Immunol 37:2127–2137

    Article  CAS  PubMed  Google Scholar 

  • Kumar V (2013) NKT-cell subsets: promoters and protectors in inflammatory liver disease. J Hepatol 59:618–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Delovitch TL (2014) Different subsets of natural killer T cells may vary in their roles in health and disease. Immunology 142:321–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwiecinski J, Rhost S, Lofbom L, Blomqvist M, Mansson JE, Cardell SL, Jin T (2013) Sulfatide attenuates experimental Staphylococcus aureus sepsis through a CD1d-dependent pathway. Infect Immun 81:1114–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang GA, Devera TS, Lang ML (2008) Requirement for CD1d expression by B cells to stimulate NKT cell-enhanced antibody production. Blood 111:2158–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Nours J et al. (2016) Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat Commun 7:10570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liao CM, Zimmer MI, Shanmuganad S, Yu HT, Cardell SL, Wang CR (2012) Dysregulation of CD1d-restricted type ii natural killer T cells leads to spontaneous development of colitis in mice. Gastroenterology 142:326–334 e321-322

    Article  CAS  PubMed  Google Scholar 

  • Luoma AM et al. (2013) Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human gammadelta T cells. Immunity 39:1032–1042

    Article  CAS  PubMed  Google Scholar 

  • Macho-Fernandez E, Brigl M (2015) The extended family of CD1d-restricted NKT cells: sifting through a mixed bag of TCRs, antigens, and functions. Front Immunol 6:362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magalhaes K et al. (2010) Schistosomal-derived lysophosphatidylcholine are involved in eosinophil activation and recruitment through toll-like receptor-2-dependent mechanisms. J Infect Dis 202:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Mallevaey T et al. (2007) Invariant and noninvariant natural killer T cells exert opposite regulatory functions on the immune response during murine schistosomiasis. Infect Immun 75:2171–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricic I, Girardi E, Zajonc DM, Kumar V (2014a) Recognition of lysophosphatidylcholine by type II NKT cells and protection from an inflammatory liver disease. J Immunol 193:4580–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricic I, Halder R, Bischof F, Kumar V (2014b) Dendritic cells and anergic type I NKT cells play a crucial role in sulfatide-mediated immune regulation in experimental autoimmune encephalomyelitis. J Immunol 193:1035–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maricic I et al. (2015) Inhibition of type I natural killer T cells by retinoids or following sulfatide-mediated activation of type II natural killer T cells attenuates alcoholic liver disease in mice. Hepatology 61:1357–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marrero I, Ware R, Kumar V (2015) Type II NKT cells in inflammation, autoimmunity, microbial immunity, and cancer. Front Immunol 6:316

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuda JL et al. (2000) Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J Exp Med 192:741–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair S et al. (2015) Type II NKT-TFH cells against Gaucher lipids regulate B-cell immunity and inflammation. Blood 125:1256–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olszak T et al. (2014) Protective mucosal immunity mediated by epithelial CD1d and IL-10. Nature 509:497–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh VV et al. (2005) Glycolipid antigen induces long-term natural killer T cell anergy in mice. J Clin Invest 115:2572–2583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parekh VV et al. (2009) PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 182:2816–2826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel O et al. (2012) Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Nat Immunol 13:857–863

    Article  CAS  PubMed  Google Scholar 

  • Pei B, Speak AO, Shepherd D, Butters T, Cerundolo V, Platt FM, Kronenberg M (2011) Diverse endogenous antigens for mouse NKT cells: self-antigens that are not glycosphingolipids. J Immunol 186:1348–1360

    Article  CAS  PubMed  Google Scholar 

  • Raghuraman G, Geng Y, Wang CR (2006) IFN-beta-mediated up-regulation of CD1d in bacteria-infected APCs. J Immunol 177:7841–7848

    Article  CAS  PubMed  Google Scholar 

  • Rakhshandehroo M et al. (2014) CD1d-mediated presentation of endogenous lipid antigens by adipocytes requires microsomal triglyceride transfer protein. J Biol Chem 289:22128–22139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR (2008) Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma. Blood 111:5637–5645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhost S, Lofbom L, Mansson J, Lehuen A, Blomqvist M, Cardell SL (2014) Administration of sulfatide to ameliorate type I diabetes in non-obese diabetic mice. Scand J Immunol 79:260–266

    Article  CAS  PubMed  Google Scholar 

  • Rhost S et al. (2012) Identification of novel glycolipid ligands activating a sulfatide-reactive, CD1d-restricted, type II natural killer T lymphocyte. Eur J Immunol 42:2851–2860

    Article  CAS  PubMed  Google Scholar 

  • Rolf J et al. (2008) Molecular profiling reveals distinct functional attributes of CD1d-restricted natural killer (NK) T cell subsets. Mol Immunol 45:2607–2620

    Article  CAS  PubMed  Google Scholar 

  • Ronger-Savle S et al. (2005) TGFbeta inhibits CD1d expression on dendritic cells. J Invest Dermatol 124:116–118

    Article  CAS  PubMed  Google Scholar 

  • Rossjohn J, Pellicci DG, Patel O, Gapin L, Godfrey DI (2012) Recognition of CD1d-restricted antigens by natural killer T cells. Nat Rev Immunol 12:845–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy KC, Maricic I, Khurana A, Smith TR, Halder RC, Kumar V (2008) Involvement of secretory and endosomal compartments in presentation of an exogenous self-glycolipid to type II NKT cells. J Immunol 180:2942–2950

    Article  CAS  PubMed  Google Scholar 

  • Schrumpf E et al. (2015) The biliary epithelium presents antigens to and activates natural killer T cells. Hepatology 62:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Schumann J, Pittoni P, Tonti E, Macdonald HR, Dellabona P, Casorati G (2005) Targeted expression of human CD1d in transgenic mice reveals independent roles for thymocytes and thymic APCs in positive and negative selection of Valpha14i NKT cells. J Immunol 175:7303–7310

    Article  PubMed  Google Scholar 

  • Sevastou I, Kaffe E, Mouratis MA, Aidinis V (2013) Lysoglycerophospholipids in chronic inflammatory disorders: the PLA(2)/LPC and ATX/LPA axes. Biochim Biophys Acta 1831:42–60

    Article  CAS  PubMed  Google Scholar 

  • Shah HB, Devera TS, Rampuria P, Lang GA, Lang ML (2012) Type II NKT cells facilitate alum-sensing and humoral immunity. J Leukoc Biol 92:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shamshiev A, Gober HJ, Donda A, Mazorra Z, Mori L, De Libero G (2002) Presentation of the same glycolipid by different CD1 molecules. J Exp Med 195:1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JH, Park JY, Shin YH, Lee H, Park YK, Jung S, Park SH (2012) Mutation of a positively charged cytoplasmic motif within CD1d results in multiple defects in antigen presentation to NKT cells. J Immunol 188:2235–2243

    Article  CAS  PubMed  Google Scholar 

  • Sonoda KH, Stein-Streilein J (2002) CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur J Immunol 32:848–857

    Article  CAS  PubMed  Google Scholar 

  • Subramanian L et al. (2012) NKT cells stimulated by long fatty acyl chain sulfatides significantly reduce the incidence of type 1 diabetes in nonobese diabetic mice [corrected]. PLoS One 7:e37771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundell IB, Halder R, Zhang M, Maricic I, Koka PS, Kumar V (2010) Sulfatide administration leads to inhibition of HIV-1 replication and enhanced hematopoeisis. J Stem Cells 5:33–42

    PubMed  Google Scholar 

  • Tatituri RV et al. (2013) Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc Natl Acad Sci U S A 110:1827–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng MW, Yue S, Sharkey J, Exley MA, Smyth MJ (2009) CD1d activation and blockade: a new antitumor strategy. J Immunol 182:3366–3371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terabe M et al. (2005) A nonclassical non-Valpha14Jalpha18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J Exp Med 202:1627–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushida M, Iyoda T, Kanamori M, Watarai H, Takahara K, Inaba K (2015) In vivo and in vitro analyses of alpha-galactosylceramide uptake by conventional dendritic cell subsets using its fluorescence-labeled derivative. Immunol Lett 168:300–305

    Article  CAS  PubMed  Google Scholar 

  • Wolf BJ et al. (2015) Identification of a potent microbial lipid antigen for diverse NKT cells. J Immunol 195:2540–2551

    Article  CAS  PubMed  Google Scholar 

  • Wu D et al. (2005) Bacterial glycolipids and analogs as antigens for CD1d-restricted NKT cells. Proc Natl Acad Sci U S A 102:1351–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Jhaveri R, Huang J, Qi Y, Diehl AM (2007) Endoplasmic reticulum stress, hepatocyte CD1d and NKT cell abnormalities in murine fatty livers. Lab Investig 87:927–937

    Article  CAS  PubMed  Google Scholar 

  • Yang SH et al. (2011) Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury. J Am Soc Nephrol 22:1305–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajonc DM et al. (2005) Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J Exp Med 202:1517–1526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeissig S et al. (2012) Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat Med 18:1060–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng D et al. (1998) Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines. J Exp Med 187:525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G et al. (2011) Sulfatide-activated type II NKT cells prevent allergic airway inflammation by inhibiting type I NKT cell function in a mouse model of asthma. Am J Phys Lung Cell Mol Phys 301:L975–L984

    CAS  Google Scholar 

  • Zhao J, Weng X, Bagchi S, Wang CR (2014) Polyclonal type II natural killer T cells require PLZF and SAP for their development and contribute to CpG-mediated antitumor response. Proc Natl Acad Sci U S A 111:2674–2679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou D et al. (2004a) Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303:523–527

    Article  CAS  PubMed  Google Scholar 

  • Zhou D et al. (2004b) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health, USA, R01 CA100660 and R01 AA020864 (to VK). We thank the other members of the Kumar laboratory and Dr. Randle Ware for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Kumar.

Additional information

This article is published in the Special Issue CD1, MR1, NKT, and MAIT: Evolution and Origins of Non-peptidic Antigen Recognition by T lymphocytes with Guest Editor Dr. Dirk Zajonc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dasgupta, S., Kumar, V. Type II NKT cells: a distinct CD1d-restricted immune regulatory NKT cell subset. Immunogenetics 68, 665–676 (2016). https://doi.org/10.1007/s00251-016-0930-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0930-1

Keywords

Navigation