Skip to main content
Log in

Identification of interleukin genes in Pogona vitticeps using a de novo transcriptome assembly from RNA-seq data

  • Original Article
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Interleukins are a group of cytokines with complex immunomodulatory functions that are important for regulating immunity in vertebrate species. Reptiles and mammals last shared a common ancestor more than 350 million years ago, so it is not surprising that low sequence identity has prevented divergent interleukin genes from being identified in the central bearded dragon lizard, Pogona vitticeps, in its genome assembly. To determine the complete nucleotide sequences of key interleukin genes, we constructed full-length transcripts, using the Trinity platform, from short paired-end read RNA sequences from stimulated spleen cells. De novo transcript reconstruction and analysis allowed us to identify interleukin genes that are missing from the published P. vitticeps assembly. Identification of key cytokines in P. vitticeps will provide insight into the essential molecular mechanisms and evolution of interleukin gene families and allow for characterization of the immune response in a lizard for comparison with mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afifi A, Mohamed ER, El Ridi R (1993) Seasonal conditions determine the manner of rejection in reptiles. J Exp Zool 265:459–468

    Article  Google Scholar 

  • Alexander WS (1998) Cytokines in hematopoiesis. Int Rev Immunol 16:651–682

    Article  CAS  PubMed  Google Scholar 

  • Avery S, Rothwell L, Degen WD, Schijns VE, Young J, Kaufman J, Kaiser P (2004) Characterization of the first nonmammalian T2 cytokine gene cluster: the cluster contains functional single-copy genes for IL-3, IL-4, IL-13, and GM-CSF, a gene for IL-5 that appears to be a pseudogene, and a gene encoding another cytokinelike transcript, KK34. J Interf Cytokine Res 24:600–610

    Article  CAS  Google Scholar 

  • Bao K, Reinhardt RL (2015) The differential expression of IL-4 and IL-13 and its impact on type-2 immunity. Cytokine 75:25–37

    Article  CAS  PubMed  Google Scholar 

  • Baran J, Kowalczyk D, Ozog M, Zembala M (2001) Three-color flow cytometry detection of intracellular cytokines in peripheral blood mononuclear cells: comparative analysis of phorbol myristate acetate-ionomycin and phytohemagglutinin stimulation. Clin Diagn Lab Immunol 8:303–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter EW, Mirabella F, Bowers SR, James SR, Bonavita AM, Bertrand E, Strogantsev R, Hawwari A, Bert AG, Gonzalez de Arce A, West AG, Bonifer C, Cockerill PN (2012) The inducible tissue-specific expression of the human IL-3/GM-CSF locus is controlled by a complex array of developmentally regulated enhancers. J Immunol 189:4459–4469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazan JF, McKay DB (1992) Unraveling the Structure of IL-2. Science 257:410–413

  • Beck G (1998) Macrokines: invertebrate cytokine-like molecules? Front Biosci 3:d559–d569

    Article  CAS  PubMed  Google Scholar 

  • Bird S, Secombes CJ (2006) Danio rerio partial mRNA for interkeukin-4 (il-4 gene). GenBank Accession No. AM403245

  • Bird S, Zou J, Kono T, et al. (2005a) Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics 56:909–923

  • Bird S, Zou J, Savan R, Kono T, Sakai M, Woo J, Secombes C (2005b) Characterisation and expression analysis of an interleukin 6 homologue in the Japanese pufferfish, Fugu rubripes. Dev Comp Immunol 29:775–789

    Article  CAS  PubMed  Google Scholar 

  • Bird S, Zou J, Wang T, Munday B, Cunningham C, Secombes CJ (2002) Evolution of interleukin-1beta. Cytokine Growth Factor Rev 13:483–502

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brocker C, Thompson D, Matsumoto A, Nebert DW, Vasiliou V (2010) Evolutionary divergence and functions of the human interleukin (IL) gene family. Hum Genomics 5:30–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caput D, Beutler B, Hartog K, Thayer R, Brown-Shimer S, Cerami A (1986) Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A 83:1670–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chomarat P, Banchereau J (1998) Interleukin-4 and interleukin-13: their similarities and discrepancies. Int Rev Immunol 17:1–52

    Article  CAS  PubMed  Google Scholar 

  • Cockerill PN (2004) Mechanisms of transcriptional regulation of the human IL-3/GM-CSF locus by inducible tissue-specific promoters and enhancers. Crit Rev Immunol 24:385–408

    Article  CAS  PubMed  Google Scholar 

  • Commins SP, Borish L, Steinke JW (2010) Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol 125:S53–S72

    Article  PubMed  Google Scholar 

  • Crawford JE, Guelbeogo WM, Sanou A, Traoré A, Vernick KD, Sagnon N, Lazzaro BP (2010) De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS One 5:e14202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-Rosales P, Bird S, Wang TH, Fujiki K, Davidson WS, Zou J, Secombes CJ (2009) Rainbow trout interleukin-2: cloning, expression and bioactivity analysis. Fish Shellfish Immunol 27:414–422

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra JM, Takizawa F, Fischer U, Friedrich M, Soto-Lampe V, Lefevre C, Lenk M, Karger A, Matsui T, Hashimoto K (2014) Identification of a gene for an ancient cytokine, interleukin 15-like, in mammals; interleukins 2 and 15 co-evolved with this third family member, all sharing binding motifs for IL-15Ralpha. Immunogenetics 66:93–103

    Article  CAS  PubMed  Google Scholar 

  • Dinarello CA, Wolff SM (1993) The role of interleukin-1 in disease. N Engl J Med 328:106–113

    Article  CAS  PubMed  Google Scholar 

  • Drozdetskiy A, Cole C, Procter J, Barton GJ (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43:W389–W394

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn E, Sims JE, Nicklin MJ, O'Neill LA (2001) Annotating genes with potential roles in the immune system: six new members of the IL-1 family. Trends Immunol 22:533–536

    Article  CAS  PubMed  Google Scholar 

  • Eberl G, Colonna M, Di Santo JP, McKenzie AN (2015) Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science 348:aaa6566

    Article  PubMed  Google Scholar 

  • Eisenberg SP, Brewer MT, Verderber E, Heimdal P, Brandhuber BJ, Thompson RC (1991) Interleukin-1 receptor antagonist is a member of the interleukin-1 gene family—evolution of a cytokine control mechanism. Proc Natl Acad Sci U S A 88:5232–5236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenmesser EZ, Horita DA, Altieri AS, Byrd RA (2001) Solution structure of interleukin-13 and insights into receptor engagement. J Mol Biol 310:231–241

    Article  CAS  PubMed  Google Scholar 

  • El Ridi R, Badir N, El Rouby S (1981) Effect of seasonal variations on the immune system of the snake, Psammophis schokari. J Exp Zool 216:357–365

    Article  Google Scholar 

  • Farag MA, El Ridi R (1985) Mixed leucocyte reaction (MLR) in the snake Psammophis sibilans. Immunology 55:173–181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farag MA, El Ridi R (1990) Functional markers of the major histocompatibility gene complex of snakes. Eur J Immunol 20:2029–2033

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Ueda Y, Zhu Y, Gifford VR, Garofalo MR, Mohandas N, Martin CH, Palazzolo MJ, Cheng JF, Rubin EM (1997) Computational and biological analysis of 680 kb of DNA sequence from the human 5q31 cytokine gene cluster region. Genome Res 7:495–512

    CAS  PubMed  Google Scholar 

  • Frolova EI, Dolganov GM, Mazo IA, Smirnov DV, Copeland P, Stewart C, O'Brien SJ, Dean M (1991) Linkage mapping of the human CSF2 and IL3 genes. Proc Natl Acad Sci U S A 88:4821–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaffen SL, Liu KD (2004) Overview of interleukin-2 function, production and clinical applications. Cytokine 28:109–123

  • Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z, Zhang P, Fujita M, Patel HR, Holleley CE, Zhou Y, Zhang X, Matsurbara K, Waters P, Graves JAM, Sarre SD, Zhang G (2015) High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. Gigascience 4:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibson MS, Kaiser P, Fife M (2014) The chicken IL-1 family: evolution in the context of the studied vertebrate lineage. Immunogenetics 66:427–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:W695–W699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, Macmanes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, Leduc RD, Friedman N, Regev A (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Harrison GA, Wedlock DN (2000) Marsupial cytokines. Structure, function and evolution. Dev Comp Immunol 24:473–484 http://www.cbs.dtu.dk/services/NetNGlyc/N

  • Hsu E (1998) Mutation, selection, and memory in B lymphocytes of exothermic vertebrates. Immunol Rev 162:25–36

  • Huising MO, Kruiswijk CP, Flik G (2006) Phylogeny and evolution of class-I helical cytokines. J Endocrinol 189:1–25

    Article  CAS  PubMed  Google Scholar 

  • Hussein MF, Badir N, el-Ridi R, Akef M (1978) Effect of seasonal variation on lymphoid tissues of the lizards, Mabuya quinquetaeniata Licht. and Uromastyx aegyptia Forsk. Dev Comp Immunol 2:469–478

    Article  CAS  PubMed  Google Scholar 

  • Hussein MF, Badir N, el-Ridi R, el-Deeb S (1979) Effect of seasonal variation on immune system of the lizard Scincus scincus. J Exp Zool 209:91–96

    Article  Google Scholar 

  • Igawa D, Sakai M, Savan R (2006) An unexpected discovery of two interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost: IL-22 and -26 genes have been described for the first time outside mammals. Mol Immunol 43:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Kotenko SV (2002) The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 13:223–240

    Article  CAS  PubMed  Google Scholar 

  • Kumagai N, Benedict SH, Mills GB, Gelfand EW (1987) Requirements for the simultaneous presence of phorbol esters and calcium ionophores in the expression of human T lymphocyte proliferation-related genes. J Immunol 139:1393–1399

    CAS  PubMed  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JH, Shao JZ, Xiang LX, Wen Y (2007) Cloning, characterization and expression analysis of pufferfish interleukin-4 cDNA: the first evidence of Th2-type cytokine in fish. Mol Immunol 44:2078–2086

    Article  CAS  PubMed  Google Scholar 

  • Milburn MV, Hassell AM, Lambert MH, Jordan SR, Proudfoot AE, Graber P, Wells TN (1993) A novel dimer configuration revealed by the crystal structure at 2.4 A resolution of human interleukin-5. Nature 363:172–176

    Article  CAS  PubMed  Google Scholar 

  • Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B, et al. (1993) Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362:248–250

    Article  CAS  PubMed  Google Scholar 

  • Mirabella F, Baxter EW, Boissinot M, James SR, Cockerill PN (2010) The human IL-3/granulocyte-macrophage colony-stimulating factor locus is epigenetically silent in immature thymocytes and is progressively activated during T cell development. J Immunol 184:3043–3054

    Article  CAS  PubMed  Google Scholar 

  • Morgan DA, Ruscetti FW, Gallo R (1976) Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193:1007–1008

    Article  CAS  PubMed  Google Scholar 

  • Moy FJ, Diblasio E, Wilhelm J, Powers R (2001) Solution structure of human IL-13 and implication for receptor binding. J Mol Biol 310:219–230

    Article  CAS  PubMed  Google Scholar 

  • Mulero JJ, Nelken ST, Ford JE (2000) Organization of the human interleukin-1 receptor antagonist gene IL1HY1. Immunogenetics 51:425–428

    Article  CAS  PubMed  Google Scholar 

  • Munoz FJ, De la Fuente M (2001) The effect of the seasonal cycle on the splenic leukocyte functions in the turtle Mauremys caspica. Physiol Biochem Zool 74:660–667

    Article  CAS  PubMed  Google Scholar 

  • Nicola NA (1989) Hemopoietic cell growth factors and their receptors. Annu Rev Biochem 58:45–77

    Article  CAS  PubMed  Google Scholar 

  • Ogryzko NV, Renshaw SA, Wilson HL (2014) The IL-1 family in fish: swimming through the muddy waters of inflammasome evolution. Dev Comp Immunol 46:53–62

    Article  CAS  PubMed  Google Scholar 

  • Ohtani M, Hayashi N, Hashimoto K, Nakanishi T, Dijkstra JM (2008) Comprehensive clarification of two paralogous interleukin 4/13 loci in teleost fish. Immunogenetics 60:383–397

    Article  CAS  PubMed  Google Scholar 

  • Olsen I, Sollid LM (2013) Pitfalls in determining the cytokine profile of human T cells. J Immunol Methods 390:106–112

    Article  CAS  PubMed  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Gerondakis S, Woltring D, Shannon MF (2003) c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J Immunol 170:3724–3731

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Procko E, Shannon MF (2001) Chromatin remodeling, measured by a novel real-time polymerase chain reaction assay, across the proximal promoter region of the IL-2 gene. J Immunol 167:4494–4503

    Article  CAS  PubMed  Google Scholar 

  • Roberts A, Pachter L (2013) Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods 10:71–73

    Article  CAS  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Secombes CJ, Wang T, Bird S (2011) The interleukins of fish. Dev Comp Immunol 35:1336–1345

    Article  CAS  PubMed  Google Scholar 

  • Sievers F, Wilm A, Dineen D, Gibson T, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson J, Higgins D (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7

  • Takahashi A, de Andres MC, Hashimoto K, Itoi E, Oreffo RO (2015) Epigenetic regulation of interleukin-8, an inflammatory chemokine, in osteoarthritis. Osteoarthr Cartil 23:1946–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Diaz-Rosales P, Martin SA, Secombes CJ (2010) Cloning of a novel interleukin (IL)-20-like gene in rainbow trout Oncorhynchus mykiss gives an insight into the evolution of the IL-10 family. Dev Comp Immunol 34:158–167

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Johansson P, Abos B, Holt A, Tafalla C, Jiang Y, Wang A, Xu Q, Qi Z, Huang W, Costa MM, Diaz-Rosales P, Holland JW, Secombes CJ (2016) First in-depth analysis of the novel Th2-type cytokines in salmonid fish reveals distinct patterns of expression and modulation but overlapping bioactivities. Oncotarget 7:10917–10946

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Secombes CJ (2015) The evolution of IL-4 and IL-13 and their receptor subunits. Cytokine 75:8–13

    Article  PubMed  Google Scholar 

  • Wells TN, Graber P, Proudfoot AE, Arod CY, Jordan SR, Lambert MH, Hassel AM, Milburn MV (1994) The three-dimensional structure of human interleukin-5 at 2.4-angstroms resolution: implication for the structures of other cytokines. Ann N Y Acad Sci 725:118–127

    Article  CAS  PubMed  Google Scholar 

  • Wenchao A, Haishan L, Song N, Lei L, Huiming C (2013) Optimal method to stimulate cytokine production and its use in immunotoxicity assessment. Int J Environ Res Public Health 10:3834–3842

    Article  Google Scholar 

  • Wong ES, Young LJ, Papenfuss AT, Belov K (2006) In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Res 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21:1859–1875

    Article  CAS  PubMed  Google Scholar 

  • Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21:425–456

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Takizawa F, Fischer U, Dijkstra JM (2015) Along the axis between type 1 and type 2 immunity; principles conserved in evolution from fish to mammals. Biology (Basel) 4:814–859

    Google Scholar 

  • Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GG, et al. (1986) Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10

    Article  CAS  PubMed  Google Scholar 

  • Young PR, Sylvester D (1989) Cloning of rabbit interleukin-1 beta: differential evolution of IL-1 alpha and IL-1 beta proteins. Protein Eng 2:545–551

    Article  CAS  PubMed  Google Scholar 

  • Zapata AG, Varas A, Torroba M (1992) Seasonal variations in the immune system of lower vertebrates. Immunol Today 13:142–147

    Article  CAS  PubMed  Google Scholar 

  • Zelus D, Robinson-Rechavi M, Delacre M, Auriault C, Laudet V (2000) Fast evolution of interleukin-2 in mammals and positive selection in ruminants. J Mol Evol 51:234–244

    CAS  PubMed  Google Scholar 

  • Zimmerman LM, Vogel LA, Bowden RM (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213:661–671

  • Zurawski G, de Vries JE (1994) Interleukin 13 elicits a subset of the activities of its close relative interleukin 4. Stem Cells 12:169–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a University of Canberra postdoctoral fellowship (awarded to Tariq Ezaz, Sudha Rao, Stephen Sarre, Janine Deakin, Kris Hardy and Arthur Georges, and supporting Renae Domaschenz and Alexandra Livernois). Tariq Ezaz is supported by an Australian Research Council Future Fellowship (FT110100733).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janine E Deakin.

Ethics declarations

Wild-caught male P. vitticeps (Id #UC<Aus>:111880108089) was euthanized according to ethics approval by the Animal Ethics Committee (reference number CE-13-10) at the University of Canberra.

Electronic supplementary material

Supplemental Fig. 1

(PDF 750 kb)

Supplemental Fig. 2

(PDF 54 kb)

Supplemental Fig. 3

(PDF 813 kb)

Supplemental Fig. 4

(PDF 501 kb)

Supplemental Fig. 5

(PDF 412 kb)

Supplemental Fig. 6

(PDF 216 kb)

Supplemental Fig. 7

(PDF 181 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livernois, A., Hardy, K., Domaschenz, R. et al. Identification of interleukin genes in Pogona vitticeps using a de novo transcriptome assembly from RNA-seq data. Immunogenetics 68, 719–731 (2016). https://doi.org/10.1007/s00251-016-0922-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-016-0922-1

Keywords

Navigation