Skip to main content

Advertisement

Log in

Transcriptome profiling of CTLs regulated by rapamycin using RNA-Seq

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Memory programming of cytotoxic T cells (CTLs) by inflammatory cytokines can be regulated by mammalian target of rapamycin (mTOR). We have shown that inhibition of mTOR during CTL activation leads to the enhancement of memory, but the molecular mechanisms remain largely unknown. Using high-throughput RNA-Seq, we identified genes and functions in mouse CTLs affected by mTOR inhibition through rapamycin. Of the 43,221 identified transcripts, 184 transcripts were differentially expressed after rapamycin treatment, corresponding to 128 annotated genes. Of these genes, 114 were downregulated and only 14 were upregulated. Most importantly, 50 of them are directly related to cell death and survival. In addition, several genes such as CD62L are related to migration. Furthermore, we predicted downregulation of transcriptional regulators based on the total differentially expressed genes, as well as the subset of apoptosis-related genes. Quantitative PCR confirmed the differential expressions detected in RNA-Seq. We conclude that the regulatory function of rapamycin may work through inhibition of multiple genes related to apoptosis and migration, which enhance CTL survival into memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agarwal P, Raghavan A, Nandiwada SL, Curtsinger JM, Bohjanen PR, Mueller DL, Mescher MF (2009) Gene regulation and chromatin remodeling by IL-12 and type I IFN in programming for CD8 T cell effector function and memory. J Immunol 183:1695–1704

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Araki K, Turner AP, Shaffer VO, Gangappa S, Keller SA, Bachmann MF, Larsen CP, Ahmed R (2009) mTOR regulates memory CD8 T-cell differentiation. Nature 460:108–112

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Araki K, Ellebedy AH, Ahmed R (2011) TOR in the immune system. Curr Opin Cell Biol 23:707–715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Badovinac VP, Porter BB, Harty JT (2004) CD8+ T cell contraction is controlled by early inflammation. Nat Immunol 5:809–817

    Article  PubMed  CAS  Google Scholar 

  • Barbi J, Pardoll D, Pan F (2013) Metabolic control of the Treg/Th17 axis. Immunol Rev 252:52–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Ceol CJ, Houvras Y, Jane-Valbuena J, Bilodeau S, Orlando DA, Battisti V, Fritsch L, Lin WM, Hollmann TJ, Ferre F, Bourque C, Burke CJ, Turner L, Uong A, Johnson LA, Beroukhim R, Mermel CH, Loda M, Ait-Si-Ali S, Garraway LA, Young RA, Zon LI (2011) The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471:513–517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12:325–338

    PubMed  CAS  PubMed Central  Google Scholar 

  • Curtsinger JM, Lins DC, Mescher MF (2003) Signal 3 determines tolerance versus full activation of naive CD8 T cells: dissociating proliferation and development of effector function. J Exp Med 197:1141–1151

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dejean AS, Hedrick SM, Kerdiles YM (2010) Highly specialized role of Forkhead box O transcription factors in the immune system. Antioxid Redox Signal 14:663–674

    Article  PubMed  Google Scholar 

  • Dotsch V, Bernassola F, Coutandin D, Candi E, Melino G (2010) p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2:a004887

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dunker N, Schmitt K, Schuster N, Krieglstein K (2002) The role of transforming growth factor beta-2, beta-3 in mediating apoptosis in the murine intestinal mucosa. Gastroenterology 122:1364–1375

    Article  PubMed  CAS  Google Scholar 

  • Garritano S, Inga A, Gemignani F, Landi S (2013) More targets, more pathways and more clues for mutant p53. Oncogenesis 2:e54

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gillings AS, Balmanno K, Wiggins CM, Johnson M, Cook SJ (2009) Apoptosis and autophagy: BIM as a mediator of tumour cell death in response to oncogene-targeted therapeutics. FEBS J 276:6050–6062

    Article  PubMed  CAS  Google Scholar 

  • Graziano V, De Laurenzi V (2011) Role of p63 in cancer development. Biochim Biophys Acta 1816:57–66

    PubMed  CAS  Google Scholar 

  • Hand TW, Cui W, Jung YW, Sefik E, Joshi NS, Chandele A, Liu Y, Kaech SM (2010) Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc Natl Acad Sci U S A 107:16601–16606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S, Tokunaga C, Avruch J, Yonezawa K (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110:177–189

    Article  PubMed  CAS  Google Scholar 

  • Huang X, Yokota T, Iwata J, Chai Y (2011) Tgf-beta-mediated FasL-Fas-Caspase pathway is crucial during palatogenesis. J Dent Res 90:981–987

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jameson SC, Masopust D (2009) Diversity in T cell memory: an embarrassment of riches. Immunity 31:859–871

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaech SM, Wherry EJ, Ahmed R (2002) Effector and memory T-cell differentiation: implications for vaccine development. Nat Rev Immunol 2:251–262

    Article  PubMed  CAS  Google Scholar 

  • Kaech SM, Tan JT, Wherry EJ, Konieczny BT, Surh CD, Ahmed R (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    Article  PubMed  CAS  Google Scholar 

  • Kallio JP, Hopkins-Donaldson S, Baker AH, Kahari VM (2011) TIMP-3 promotes apoptosis in nonadherent small cell lung carcinoma cells lacking functional death receptor pathway. Int J Cancer 128:991–996

    Article  PubMed  CAS  Google Scholar 

  • Kastenmuller W, Brandes M, Wang Z, Herz J, Egen JG, Germain RN (2013) Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38:502–513

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kerdiles YM, Beisner DR, Tinoco R, Dejean AS, Castrillon DH, DePinho RA, Hedrick SM (2009) Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 10:176–184

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Garcia K, Sun Z, Xiao Z (2011) Temporal regulation of rapamycin on memory CTL programming by IL-12. PLoS ONE 6:e25177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Liu N, Phillips T, Zhang M, Wang Y, Opferman JT, Shah R, Ashton-Rickardt PG (2004) Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat Immunol 5:919–926

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Guo S, Hibbert JM, Jain V, Singh N, Wilson NO, Stiles JK (2011) CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev 22:121–130

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lohr K, Moritz C, Contente A, Dobbelstein M (2003) p21/CDKN1A mediates negative regulation of transcription by p53. J Biol Chem 278:32507–32516

    Article  PubMed  Google Scholar 

  • Majumder S, Bhattacharjee S, Paul Chowdhury B, Majumdar S (2012) CXCL10 is critical for the generation of protective CD8 T cell response induced by antigen pulsed CpG-ODN activated dendritic cells. PLoS ONE 7:e48727

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Menke J, Iwata Y, Rabacal WA, Basu R, Yeung YG, Humphreys BD, Wada T, Schwarting A, Stanley ER, Kelley VR (2009) CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J Clin Invest 119:2330–2342

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mescher MF, Curtsinger JM, Agarwal P, Casey KA, Gerner M, Hammerbeck CD, Popescu F, Xiao Z (2006) Signals required for programming effector and memory development by CD8+ T cells. Immunol Rev 211:81–92

    Article  PubMed  CAS  Google Scholar 

  • Michaud JL, Rosenquist T, May NR, Fan CM (1998) Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes Dev 12:3264–3275

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Obar JJ, Lefrancois L (2010) Early signals during CD8(+) T cell priming regulate the generation of central memory cells. J Immunol 185:263–272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Pearce EL, Walsh MC, Cejas PJ, Harms GM, Shen H, Wang LS, Jones RG, Choi Y (2009) Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460:103–107

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78

    Article  PubMed  Google Scholar 

  • Singh UP, Singh S, Singh R, Cong Y, Taub DD, Lillard JW Jr (2008) CXCL10-producing mucosal CD4+ T cells, NK cells, and NKT cells are associated with chronic colitis in IL-10(−/−) mice, which can be abrogated by anti-CXCL10 antibody inhibition. J Interferon Cytokine Res 28:31–43

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Staal FJ, Luis TC, Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8:581–593

    Article  PubMed  CAS  Google Scholar 

  • Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M, Henrickson SE, de la Torre JC, Groom JR, Luster AD, von Andrian UH (2012) Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150:1249–1263

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Thomson AW, Turnquist HR, Raimondi G (2009) Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol 9:324–337

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46–53

    Article  PubMed  CAS  Google Scholar 

  • Watford WT, Hissong BD, Bream JH, Kanno Y, Muul L, O’Shea JJ (2004) Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev 202:139–156

    Article  PubMed  CAS  Google Scholar 

  • Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R, von Andrian UH, Ahmed R (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234

    Article  PubMed  CAS  Google Scholar 

  • Williams MA, Bevan MJ (2007) Effector and memory CTL differentiation. Annu Rev Immunol 25:171–192

    Article  PubMed  CAS  Google Scholar 

  • Xiang H, Wang J, Boxer LM (2006) Role of the cyclic AMP response element in the bcl-2 promoter in the regulation of endogenous Bcl-2 expression and apoptosis in murine B cells. Mol Cell Biol 26:8599–8606

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Xiao Z, Casey KA, Jameson SC, Curtsinger JM, Mescher MF (2009) Programming for CD8 T cell memory development requires IL-12 or type I IFN. J Immunol 182:2786–2794

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zeng H, Yang K, Cloer C, Neale G, Vogel P, Chi H (2013) mTORC1 couples immune signals and metabolic programming to establish T(reg)-cell function. Nature 499:485–490

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou X, Yu S, Zhao DM, Harty JT, Badovinac VP, Xue HH (2010) Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity 33:229–240

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mr. Ken Class for technical assistance. This work was partially supported by the National Institutes of Health GrantsR21AI095715A (to X. Z.) and Startup from UMD (to X. Z.). This work was supported in part by AFRI grant No. 2011-67015-30183 from USDA NIFA (to GEL). Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to George E. Liu or Zhengguo Xiao.

Additional information

Elliot Mattson and Lingyang Xu are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(DOCX 152 kb)

Figure S2

(DOCX 104 kb)

Figure S3

(DOCX 54 kb)

Figure S4

(DOCX 291 kb)

Figure S5

(DOCX 398 kb)

Table S1

(DOCX 14 kb)

Table S2

(XLSB 66 kb)

Table S3

(XLS 34 kb)

Table S4

(XLSX 53 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattson, E., Xu, L., Li, L. et al. Transcriptome profiling of CTLs regulated by rapamycin using RNA-Seq. Immunogenetics 66, 625–633 (2014). https://doi.org/10.1007/s00251-014-0790-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-014-0790-5

Keywords

Navigation