Skip to main content

Advertisement

Log in

Genotyping and segregation analyses indicate the presence of only two functional MIC genes in rhesus macaques

  • Brief Communication
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

MIC molecules are stress-inducible ligands of the activating receptor NKG2D, which is expressed on natural killer cells and subsets of T lymphocytes. In rhesus macaques (Macaca mulatta), three different MIC sequences (MIC1, MIC2, MIC3) have been described that are closely related to but, according to phylogenetic analysis, do not represent orthologues of the human MICA and MICB genes. Although a single haplotype of the rhesus macaque Mhc (Mamu) has been completely sequenced, it remained unknown so far whether these three sequences are derived from two or three Mamu-MIC genes. We genotyped a cohort of 115 rhesus macaque individuals for the presence of MIC1, MIC2, and MIC3 sequences and analysed the segregation in families. All individuals were positive for MIC2, whereas only 66.1 and 80.9 % were positive for MIC1 and MIC3, respectively. MIC1 and MIC3 sequences segregated in offspring, indicating that they behave as alleles. Thus, we conclude that two MIC genes are present in the rhesus macaque Mhc, which we propose to designate as Mamu-MICA (MIC1 and MIC3) and Mamu-MICB (MIC2). “MIC1” and “MIC3” are regarded as divergent allelic lineages of the Mamu-MICA gene. Mamu-MIC genotyping of DNA of a cohort of 68 experimentally simian immunodeficiency virus (SIV)-infected rhesus macaques revealed no significant association of either of the two Mamu-MICA allelic lineages with differences in progression to AIDS-like symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anzai T, Shiina T, Kimura N, Yanagiya K, Kohara S, Shigenari A, Yamagata T, Kulski JK, Naruse TK, Fujimori Y, Fukuzumi Y, Yamazaki M, Tashiro H, Iwamoto C, Umehara Y, Imanishi T, Meyer A, Ikeo K, Gojobori T, Bahram S, Inoko H (2003) Comparative sequencing of human and chimpanzee MHC class I regions unveils insertions/deletions as the major path to genomic divergence. Proc Natl Acad Sci USA 100:7708-7713

    Article  PubMed  CAS  Google Scholar 

  • Bahram S, Bresnahan M, Geraghty DE, Spies T (1994) A second lineage of mammalian major histocompatibility complex class I genes. Proc Natl Acad Sci USA 91:6259–6263

    Article  PubMed  CAS  Google Scholar 

  • Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T (1999) Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–729

    Article  PubMed  CAS  Google Scholar 

  • Cosman D, Müllberg J, Sutherland CL, Chin W, Armitage R, Fanslow W, Kubin M, Chalupny NJ (2001) ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14:123–133

    Article  PubMed  CAS  Google Scholar 

  • Daza-Vamenta R, Glusman G, Rowen L, Guthrie B, Geraghty DE (2004) Genetic divergence of the rhesus macaque major histocompatibility complex. Genome Res 14:1501–1515

    Article  PubMed  CAS  Google Scholar 

  • de Groot NG, Garcia CA, Verschoor EJ, Doxiadis GG, Marsh SG, Otting N, Bontrop RE (2005) Reduced MIC gene repertoire variation in West African chimpanzees as compared to humans. Mol Biol Evol 22:1375–1385

    Article  PubMed  Google Scholar 

  • Elsner HA, Schroeder M, Blasczyk R (2001) The nucleotide diversity of MICA and MICB suggests the effect of overdominant selection. Tissue Antigens 58:419–421

    Article  PubMed  CAS  Google Scholar 

  • Fukami-Kobayashi K, Shiina T, Anzai T, Sano K, Yamazaki M, Inoko H, Tateno Y (2005) Genomic evolution of MHC class I region in primates. Proc Natl Acad Sci USA 102:9230–9234

    Article  PubMed  CAS  Google Scholar 

  • Gasser S, Raulet DH (2006) The DNA damage response arouses the immune system. Cancer Res 66:3959–3962

    Article  PubMed  CAS  Google Scholar 

  • Gasser S, Orsulic S, Brown EJ, Raulet DH (2005) The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Bahram S, Bauer S, Herman A, Beauchamp M, Spies T (1996) Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium. Proc Natl Acad Sci USA 93:12445–12450

    Article  PubMed  CAS  Google Scholar 

  • Groh V, Rhinehart R, Randolph-Habecker J, Topp MS, Riddell SR, Spies T (2001) Co-stimulation of CD8 T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat Immunol 2:255–260

    Article  PubMed  CAS  Google Scholar 

  • Günther E, Walter L (2001) The major histocompatibility complex of the rat (Rattus norvegicus). Immunogenetics 53:520–542

    Article  PubMed  Google Scholar 

  • Gundlach BR, Reiprich S, Sopper S, Means RE, Dittmer U, Mätz-Rensing K, Stahl-Hennig C, Überla K (1998) Env-independent protection induced by live, attenuated simian immunodeficiency virus vaccines. J Virol 72:7846–7851

    PubMed  CAS  Google Scholar 

  • Holmes MA, Li P, Petersdorf EW, Strong RK (2002) Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D. J Immunol 169:1395–1400

    PubMed  CAS  Google Scholar 

  • Ioannidu S, Walter L, Dressel R, Günther E (2001) Physical map and expression profile of genes of the telomeric class I gene region of the rat MHC. J Immunol 166:957–3965

    Google Scholar 

  • Komatsu-Wakui M, Tokunaga K, Ishikawa Y, Kashiwase K, Moriyama S, Tsuchiya N, Ando H, Shiina T, Geraghty DE, Inoko H, Juji T (1999) MIC-A polymorphism in Japanese and a MIC-A-MIC-B null haplotype. Immunogenetics 49:620–628

    Article  PubMed  CAS  Google Scholar 

  • Kumanovics A, Madan A, Qin S, Rowen L, Hood L, Fischer Lindahl K (2002) QUOD ERAT FACIENDUM: sequence analysis of the H2-D and H2-Q regions of 129/SvJ mice. Immunogenetics 54:479–489

    Article  PubMed  CAS  Google Scholar 

  • Leelayuwat C, Townend DC, Degli-Esposti MA, Abraham LJ, Dawkins RL (1994) A new polymorphic and multicopy MHC gene family related to nonmammalian class I. Immunogenetics 40:339–351

    Article  PubMed  CAS  Google Scholar 

  • Li P, Morris DL, Willcox BE, Steinle A, Spies T, Strong RK (2001) Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA. Nat Immunol 2:443–451

    PubMed  CAS  Google Scholar 

  • Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P, Kingsley LA, Todd JA, Saah AJ, Detels R, Phair JP, Rinaldo CR Jr (1997) Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 126:946–954

    PubMed  CAS  Google Scholar 

  • Molinero LL, Fuertes MB, Girart MV, Fainboim L, Rabinovich GA, Costas MA, Zwirner NW (2004) NF-kappa B regulates expression of the MHC class I-related chain A gene in activated T lymphocytes. J Immunol 173:5583–5590

    PubMed  CAS  Google Scholar 

  • Neildez O, Le Grand R, Caufour P, Vaslin B, Cheret A, Matheux F, Theodoro F, Roques P, Dormont D (1998) Selective quasispecies transmission after systemic or mucosal exposure of macaques to simian immunodeficiency virus. Virology 243:12–20

    Article  PubMed  CAS  Google Scholar 

  • Pellet P, Vaneensberghe C, Debre P, Sumyuen MH, Theodorou I (1999) MIC genes in non-human primates. Eur J Immunogenet 26:239–241

    Article  PubMed  CAS  Google Scholar 

  • Radosavljevic M, Bahram S (2003) In vivo immunogenetics: from MIC to RAET1 loci. Immunogenetics 55:1–9

    PubMed  CAS  Google Scholar 

  • Rodriguez B, Sethi AK, Cheruvu VK, Mackay W, Bosch RJ, Kitahata M, Boswell SL, Mathews WC, Bangsberg DR, Martin J, Whalen CC, Sieg S, Yadavalli S, Deeks SG, Lederman MM (2006) Predictive value of plasma HIV RNA level on rate of CD4 T-cell decline in untreated HIV infection. JAMA 296:498–1506

    Article  Google Scholar 

  • Sauermann U, Krawczak M, Hunsmann G, Stahl-Hennig C (1997) Identification of Mhc-Mamu-DQB1 allele combinations associated with rapid disease progression in rhesus macaques infected with simian immunodeficiency virus. AIDS 11:1196–1198

    PubMed  CAS  Google Scholar 

  • Sauermann U, Stahl-Hennig C, Stolte N, Mühl T, Krawczak M, Spring M, Fuchs D, Kaup FJ, Hunsmann G, Sopper S (2000) Homozygosity for a conserved Mhc class II DQ-DRB haplotype is associated with rapid disease progression in simian immunodeficiency virus-infected macaques: results from a prospective study. J Infect Dis 182:716–724

    Article  PubMed  CAS  Google Scholar 

  • Seo JW, Bontrop R, Walter L, Günther E (1999) Major histocompatibility complex-linked MIC genes in rhesus macaques and other primates. Immunogenetics 50:358–362

    Article  PubMed  CAS  Google Scholar 

  • Seo JW, Walter L, Günther E (2001) Genomic analysis of MIC genes in rhesus macaques. Tissue Antigens 58:159–165

    Article  PubMed  CAS  Google Scholar 

  • Spreu J, Stehle T, Steinle A (2006) Human cytomegalovirus-encoded UL16 discriminates MIC molecules by their alpha2 domains. J Immunol 177:3143–3149

    PubMed  CAS  Google Scholar 

  • Steinle A, Groh V, Spies T (1998) Diversification, expression, and γδ T cell recognition of evolutionarily distant members of the MIC family of major histocompatibility complex class I-related molecules. Proc Natl Acad Sci USA 95:12510–12515

    Article  PubMed  CAS  Google Scholar 

  • Steinle A, Li P, Morris DL, Groh V, Lanier LL, Strong RK, Spies T (2001) Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 53:279–287

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Fujiyama Y, Andoh A, Bamba T, Okabe H (2001) Oxidative stress increases MICA and MICB gene expression in the human colon carcinoma cell line (CaCo-2). Biochim Biophys Acta 1526:10–12

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful for the expert technical assistance of Christiane Schwarz. R. D. and L. W. were supported by a grant from the Gesellschaft für AIDS-Forschung e. V. (Society for AIDS Research). V. M. is supported by the Research Training Group GRK 1034 financed by the Deutsche Forschungsgemeinschaft (German Research Council).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Walter.

Additional information

Anne Averdam and Sandra Seelke contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Segregation analysis of MIC sequences in offspring. Mamu-MICB is represented by blue boxes, Mamu-MICA alleles in green (MIC1) and red (MIC3) boxes. Allelic differences are indicated by different color tones. Genotypes are based on PCR typing and sequencing of respective PCR products (PDF 46 kb)

Table 1

Genotyping of non-infected rhesus macaques (XLS 29 kb)

Table 2

Genotyping of SIV-infected rhesus macaques (XLS 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Averdam, A., Seelke, S., Grützner, I. et al. Genotyping and segregation analyses indicate the presence of only two functional MIC genes in rhesus macaques. Immunogenetics 59, 247–251 (2007). https://doi.org/10.1007/s00251-006-0187-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-006-0187-1

Keywords

Navigation