Skip to main content
Log in

Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Immunoglobulin E (IgE) plays a critical role in both resistance to parasitic infection and allergy to environmental antigens. The IgE response is in turn regulated by the B-cell co-receptor CD23, and CD23-deficient mice show exaggerated IgE responses and airway hyper-responsiveness. In this report, we show that New Zealand black (NZB) mice express a variant CD23 allele, with mutations in both the C-lectin-binding domain and stalk region, which fails to bind IgE at high affinity and has reduced expression on the cell surface. Expression of the variant CD23 chain interferes with trimerisation of the receptor and has a dominant-negative effect leading to reduced IgE binding in crosses between NZB and other strains. Genetic mapping shows that the variant CD23 leads to an exaggerated primary IgE response, which is independent of other strain-specific effects. These results suggest that NZB mice or mice carrying the variant allele will be useful models for studying both allergy and quantitative traits associated with atopy. The exaggerated IgE response provides an explanation for the natural resistance of NZB mice to parasitic infection by Leishmania.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beavil AJ, Edmeades RL, Gould HJ, Sutton BJ (1992) Alpha-helical coiled-coil stalks in the low-affinity receptor for IgE (Fc epsilon RII/CD23) and related C-type lectins. Proc Natl Acad Sci USA 89(2):753–757

    CAS  PubMed  Google Scholar 

  • Bettler B, Texido G, Raggini S, Ruegg D, Hofstetter H (1992) Immunoglobulin E-binding site in Fc epsilon receptor (Fc epsilon RII/CD23) identified by homolog-scanning mutagenesis. J Biol Chem 267:185–191

    CAS  PubMed  Google Scholar 

  • Betts MJ, Russell RB (2003) Amino acid properties and consequences of substitutions. Bioinformatics for geneticists. Wiley, New York

    Google Scholar 

  • Cernadas M, De Sanctis GT, Krinzman SJ, Mark DA, Donovan CE, Listman JA, Kobzik L, Kikutani H, Christiani DC, Perkins DL, Finn PW (1999) CD23 and allergic pulmonary inflammation: potential role as an inhibitor. Am J Respir Cell Mol Biol 20(1):1–8

    CAS  PubMed  Google Scholar 

  • Cookson WO, Moffatt MF (2000) Genetics of asthma and allergic disease. Hum Mol Genet 9(16):2359–2364

    Article  CAS  PubMed  Google Scholar 

  • Dierks SE, Bartlett WC, Edmeades RL, Gould HJ, Rao M, Conrad DH (1993) The oligomeric nature of the murine Fc epsilon RII/CD23. Implications for function. J Immunol 150(6):2372–2382

    CAS  PubMed  Google Scholar 

  • Fujiwara H, Kikutani H, Suematsu S, Naka T, Yoshida K, Tanaka T, Suemura M, Matsumoto N, Kojima S et al (1994) The absence of IgE antibody-mediated augmentation of immune responses in CD23-deficient mice. Proc Natl Acad Sci USA 91(15):6835–6839

    CAS  PubMed  Google Scholar 

  • Goodnow CC, Crosbie J, Adelstein S, Lavoie TB, Smith-Gill SJ, Brink RA, Pritchard-Briscoe H, Wotherspoon JS, Loblay RH, Raphael K et al (1988) Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334(6184):676–682

    Article  CAS  PubMed  Google Scholar 

  • Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, Fear D, Smurthwaite L (2003) The biology of IGE and the basis of allergic disease. Annu Rev Immunol 21:579–628

    Article  CAS  Google Scholar 

  • Haczku A, Takeda K, Hamelmann E, Oshiba A, Loader J, Joetham A, Irvin C, Kikutani H, Gelfand EW. (1997) CD23-deficient mice develop allergic airway hyperresponsiveness following sensitization with ovalbumin. Am J Respir Crit Care Med 156(6):1945–1955

    CAS  PubMed  Google Scholar 

  • Haczku A, Takeda K, Hamelmann E, Loader J, Joetham A, Redai I, Irvin CG, Lee JJ, Kikutani H, Conrad D, Gelfand EW (2000) CD23 exhibits negative regulatory effects on allergic sensitization and airway hyperresponsiveness. Am J Respir Crit Care Med 161(3, Pt 1):952–960

    CAS  PubMed  Google Scholar 

  • Hagan P, Blumenthal UJ, Dunn D, Simpson AJ, Wilkins HA (1991) Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 349(6306):243–245

    Article  CAS  PubMed  Google Scholar 

  • Kilmon MA, Ghirlando R, Strub MP, Beavil RL, Gould HJ, Conrad DH (2001) Regulation of IgE production requires oligomerization of CD23. Journal of immunology 167(6):3139–3145

    CAS  PubMed  Google Scholar 

  • Kilmon MA, Shelburne AE, Chan-Li Y, Holmes KL, Conrad DH (2004) CD23 trimers are preassociated on the cell surface even in the absence of its ligand, IgE. J Immunol 172(2):1065–1073

    CAS  PubMed  Google Scholar 

  • Lal RB, Cooper HL, Coligan J, Chused TM (1987) Proteins associated with B lymphocyte hyperactivity in New Zealand black mice. J Immunol 138(11):3793–3798

    CAS  PubMed  Google Scholar 

  • Lezama-Dâavila CM (1997) Vaccination of different strains of mice against cutaneous leishmaniosis: usefulness of membrane antigens encapsulated into liposomes by intraperitoneal and subcutaneous administration. Arch Med Res 28(1):47–53

    CAS  PubMed  Google Scholar 

  • Lipoldova M, Svobodova M, Krulova M, Havelkova H, Badalova J, Nohynkova E, Holan V, Hart AA, Volf P, Demant P (2000) Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immunol 1:200–226

    Article  CAS  Google Scholar 

  • Lynch NR, Malavâe C, Turner KJ, Infante B (1986) IgE antibody against surface antigens of Leishmania promastigotes in American cutaneous leishmaniasis. Parasite Immunol 8(2):109–116

    CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Payet ME, Woodward EC, Conrad DH (1999) Humoral response suppression observed with CD23 transgenics. J Immunol 163(1):217–223

    CAS  PubMed  Google Scholar 

  • Payet-Jamroz M, Helm SL, Wu J, Kilmon M, Fakher M, Basalp A, Tew JG, Szakal AK, Noben-Trauth N, Conrad DH (2001) Suppression of IgE responses in CD23-transgenic animals is due to expression of CD23 on nonlymphoid cells. J Immunol 166(8):4863–4869

    CAS  PubMed  Google Scholar 

  • Rao M, Lee WT, Conrad DH (1987) Characterization of a monoclonal antibody directed against the murine B lymphocyte receptor for IgE. J Immunol 138:1845–1851

    CAS  PubMed  Google Scholar 

  • Riffo-Vasquez Y, Pitchford S, Spina D (2000a) Murine models of inflammation: role of CD23. Allergy 55 [Suppl 61]:21–26

    Article  PubMed  Google Scholar 

  • Riffo-Vasquez Y, Spina D, Thomas M, Gilbey T, Kemeny DM, Page CP (2000b) The role of CD23 on allergen-induced IgE levels, pulmonary eosinophilia and bronchial hyperresponsiveness in mice. Clin Exp Allergy J Br Soc Allergy Clin Immunol 30(5):728–738

    Article  CAS  Google Scholar 

  • Rozzo SJ, Vyse TJ, Drake CG, Kotzin BL (1996) Effect of genetic background on the contribution of New Zealand black loci to autoimmune lupus nephritis. Proc Natl Acad Sci USA 93(26):15164–15168

    Article  CAS  PubMed  Google Scholar 

  • Sacks D Noben-Trauth N (2002) The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2(11):845–858

    Article  CAS  PubMed  Google Scholar 

  • Sandford AJ, Shirakawa T, Moffatt MF, Daniels SE, Ra C, Faux JA, Young RP, Nakamura Y, Lathrop GM, Cookson WO et al (1993) Localisation of atopy and beta subunit of high-affinity IgE receptor (Fc epsilon RI) on chromosome 11q. Lancet 341(8841):332–334

    Article  CAS  PubMed  Google Scholar 

  • Stief A, Texido G, Sansig G, Eibel H, Le Gros G, van der Putten H (1994) Mice deficient in CD23 reveal its modulatory role in IgE production but no role in T and B cell development. J Immunol 152(7):3378–3390

    CAS  PubMed  Google Scholar 

  • Texido G, Eibel H, Le Gros G, van der Putten H (1994) Transgene CD23 expression on lymphoid cells modulates IgE and IgG1 responses. J Immunol 153(7):3028–3042

    CAS  PubMed  Google Scholar 

  • Yu P, Kosco-Vilbois M, Richards M, Kèohler G, Lamers MC (1994) Negative feedback regulation of IgE synthesis by murine CD23. Nature 369(6483):753–756

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

G.L. is supported by an MRC Studentship and R.J.C. is a Wellcome Trust Senior Clinical Fellow. We acknowledge useful discussions of this work with Prof. Simon Davis. We thank A. Nijnik and K. Silver for critical review of the manuscript. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Cornall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, G., Rapsomaniki, E., Bouriez, T. et al. Hyper IgE in New Zealand black mice due to a dominant-negative CD23 mutation. Immunogenetics 56, 564–571 (2004). https://doi.org/10.1007/s00251-004-0728-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0728-4

Keywords

Navigation