Skip to main content

Advertisement

Log in

Identification of a novel cytokine-like transcript differentially expressed in avian γδ T cells

  • Original Paper
  • Published:
Immunogenetics Aims and scope Submit manuscript

Abstract

Chicken represents a species with a high frequency of γδ T cells in peripheral blood, suggesting an important function. To elucidate the genes specific for the avian γδ T cells, the suppression subtractive hybridization (SSH) between γδ and αβ T cells was used. The SSH library, which was successfully enriched for the TCR γ and δ (both V and C region) sequences, provided γδ T-cell-specific genes, including, for example, the ribosomal proteins, signaling and structural molecules, and molecules related to transcription and translation. Among these genes, a clone named KK34 was shown to match the PFAM profile for IL-5 and to have 19.5% amino acid identity to the human interleukin 5 protein. Clone KK34 had lower sequence homology, from 5.4% to 15.6%, to other short-chain four-helix bundle superfamily members IL-3, IL-4, IL-13 and GM-CSF. The hydrophobic signal peptide sequence and the presence of cysteines needed for the interchain disulfide bonds were found to be conserved between clone KK34 and mammalian IL-5 proteins. Clone KK34 transcript expression was studied by RT-PCR, Northern blotting and in situ hybridization and it was confirmed to be expressed in avian γδ T cells. We propose that this clone, KK34, may represent the first nonmammalian IL-5, supporting the findings that γδ T cells are important in the development of allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a, b
Fig. 5a–h

Similar content being viewed by others

References

  • Arstila TP, Toivanen P, Lassila O (1993) Helper activity of CD4+ alpha beta T cells is required for the avian gamma delta T cell response. Eur J Immunol 23:2034–2037

    CAS  PubMed  Google Scholar 

  • Azuma C, Tanabe T, Konishi M, Kinashi T, Noma T, Matsuda F, Yaoita Y, Takatsu K, Hammarstrom L, Smith CI, et al (1986) Cloning of cDNA for human T-cell replacing factor (interleukin-5) and comparison with the murine homologue. Nucleic Acids Res 14:9149–9158

    CAS  PubMed  Google Scholar 

  • Bucy RP, Chen CH, Cooper MD (1991) Analysis of gamma delta T cells in the chicken. Semin Immunol 3:109–117

    CAS  PubMed  Google Scholar 

  • Bukowski JF, Morita CT, Brenner MB (1999) Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11:57–65

    CAS  PubMed  Google Scholar 

  • Carding SR, Egan PJ (2002) Gammadelta T cells: functional plasticity and heterogeneity. Nat Rev Immunol 2:336–345

    CAS  PubMed  Google Scholar 

  • Chen Y, Chou K, Fuchs E, Havran WL, Boismenu R (2002) Protection of the intestinal mucosa by intraepithelial gamma delta T cells. Proc Natl Acad Sci USA 99:14338–14343

    Article  CAS  PubMed  Google Scholar 

  • Constant P, Davodeau F, Peyrat MA, Poquet Y, Puzo G, Bonneville M, Fournie JJ (1994) Stimulation of human gamma delta T cells by nonpeptidic mycobacterial ligands. Science 264:267–270

    CAS  PubMed  Google Scholar 

  • Cooper MD, Chen CL, Bucy RP, Thompson CB (1991) Avian T cell ontogeny. Adv Immunol 50:87–117

    CAS  PubMed  Google Scholar 

  • Cortes A, Fonfria J, Vicente A, Varas A, Moreno J, Zapata AG (1995) T-dependent areas in the chicken bursa of Fabricius: an immunohistological study. Anat Rec 242:91–95

    CAS  PubMed  Google Scholar 

  • Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    CAS  PubMed  Google Scholar 

  • Egan PJ, Carding SR (2000) Downmodulation of the inflammatory response to bacterial infection by gammadelta T cells cytotoxic for activated macrophages. J Exp Med 191:2145–2158

    Article  CAS  PubMed  Google Scholar 

  • Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG, Lepper H (1995) Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 373:255–257

    CAS  PubMed  Google Scholar 

  • Girardi M, Oppenheim DE, Steele CR, Lewis JM, Glusac E, Filler R, Hobby P, Sutton B, Tigelaar RE, Hayday AC (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294:605–609

    CAS  PubMed  Google Scholar 

  • Groh V, Steinle A, Bauer S, Spies T (1998) Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science 279:1737–1740

    PubMed  Google Scholar 

  • Groh V, Rhinehart R, Secrist H, Bauer S, Grabstein KH, Spies T (1999) Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB. Proc Natl Acad Sci USA 96:6879–6884

    CAS  PubMed  Google Scholar 

  • Hassell AM, Wells TN, Graber P, Proudfoot AE, Anderegg RJ, Burkhart W, Jordan SR, Milburn MV (1993) Crystallization and preliminary X-ray diffraction studies of recombinant human interleukin-5. J Mol Biol 229:1150–1152

    Article  CAS  PubMed  Google Scholar 

  • Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026

    CAS  PubMed  Google Scholar 

  • Hayday A, Tigelaar R (2003) Immunoregulation in the tissues by gammadelta T cells. Nat Rev Immunol 3:233–242

    Article  CAS  PubMed  Google Scholar 

  • Hilton LS, Bean AG, Lowenthal JW (2002) The emerging role of avian cytokines as immunotherapeutics and vaccine adjuvants. Vet Immunol Immunopathol 85:119–128

    Article  CAS  PubMed  Google Scholar 

  • Jameson J, Ugarte K, Chen N, Yachi P, Fuchs E, Boismenu R, Havran WL (2002) A role for skin gammadelta T cells in wound repair. Science 296:747–749

    Article  CAS  PubMed  Google Scholar 

  • Kasahara Y, Chen CH, Cooper MD (1993) Growth requirements for avian gamma delta T cells include exogenous cytokines, receptor ligation and in vivo priming. Eur J Immunol 23:2230–2236

    CAS  PubMed  Google Scholar 

  • Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergstedt-Lindqvist S, Takahashi M, et al. (1986) Cloning of complementary DNA encoding T-cell replacing factor and identity with B-cell growth factor II. Nature 324:70–73

    CAS  PubMed  Google Scholar 

  • Kopf M, Brombacher F, Hodgkin PD, Ramsay AJ, Milbourne EA, Dai WJ, Ovington KS, Behm CA, Kohler G, Young IG, Matthaei KI (1996) IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4:15–24

    PubMed  Google Scholar 

  • Koskela K, Arstila TP, Lassila O (1998) Costimulatory function of CD28 in avian gammadelta T cells is evolutionarily conserved. Scand J Immunol 48:635–641

    Article  CAS  PubMed  Google Scholar 

  • Koskinen R, Gobel TW, Tregaskes CA, Young JR, Vainio O (1998) The structure of avian CD5 implies a conserved function. J Immunol 160:4943–4950

    CAS  PubMed  Google Scholar 

  • Krug N, Erpenbeck VJ, Balke K, Petschallies J, Tschernig T, Hohlfeld JM, Fabel H (2001) Cytokine profile of bronchoalveolar lavage-derived CD4(+), CD8(+), and gammadelta T cells in people with asthma after segmental allergen challenge. Am J Respir Cell Mol Biol 25:125–131

    CAS  PubMed  Google Scholar 

  • Kubota T, Wang J, Gobel TW, Hockett RD, Cooper MD, Chen CH (1999) Characterization of an avian (Gallus gallus domesticus) TCR alpha delta gene locus. J Immunol 163:3858–3866

    CAS  PubMed  Google Scholar 

  • Lampisuo M, Liippo J, Vainio O, McNagny KM, Kulmala J, Lassila O (1999) Characterization of prethymic progenitors within the chicken embryo. Int Immunol 11:63–69

    Article  CAS  PubMed  Google Scholar 

  • Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM, Frazer KA (2000) Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288:136–140

    Article  CAS  PubMed  Google Scholar 

  • Milburn MV, Hassell AM, Lambert MH, Jordan SR, Proudfoot AE, Graber P, Wells TN, Anderegg RJ, Burkhart W (1993) A novel dimer configuration revealed by the crystal structure at 2.4-Å resolution of human interleukin-5 crystallization and preliminary X-ray diffraction studies of recombinant human interleukin-5. Nature 363:172–176

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    CAS  PubMed  Google Scholar 

  • Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Reboul J, Gardiner K, Monneron D, Uze G, Lutfalla G (1999) Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster. Genome Res 9:242–250

    CAS  PubMed  Google Scholar 

  • Sanderson CJ, Campbell HD, Young IG (1988) Molecular and cellular biology of eosinophil differentiation factor (interleukin-5) and its effects on human and mouse B cells. Immunol Rev 102:29–50

    CAS  PubMed  Google Scholar 

  • Schneider K, Klaas R, Kaspers B, Staeheli P (2001) Chicken interleukin-6. cDNA structure and biological properties. Eur J Biochem 268:4200–4206

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhou D, Qiu L, Lai X, Simon M, Shen L, Kou Z, Wang Q, Jiang L, Estep J, Hunt R, Clagett M, Sehgal PK, Li Y, Zeng X, Morita CT, Brenner MB, Letvin NL, Chen ZW (2002) Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections. Science 295:2255–2258

    Article  CAS  PubMed  Google Scholar 

  • Six A, Rast JP, McCormack WT, Dunon D, Courtois D, Li Y, Chen CH, Cooper MD (1996) Characterization of avian T-cell receptor γ genes. Proc Natl Acad Sci USA 93:15329–15334

    Article  CAS  PubMed  Google Scholar 

  • Staeheli P, Puehler F, Schneider K, Gobel TW, Kaspers B (2001) Cytokines of birds: conserved functions — a largely different look. J Interferon Cytokine Res 21:993–1010

    Google Scholar 

  • Takahashi M, Yoshida MC, Satoh H, Hilgers J, Yaoita Y, Honjo T (1989) Chromosomal mapping of the mouse IL-4 and human IL-5 genes. Genomics 4:47–52

    CAS  PubMed  Google Scholar 

  • Takatsu K (1992) Interleukin-5. Curr Opin Immunol 4:299–306

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sano S, Nieves E, De Libero G, Rosa D, Modlin RL, Brenner MB, Bloom BR, Morita CT (1994) Nonpeptide ligands for human gamma delta T cells. Proc Natl Acad Sci USA 91:8175–8179

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    CAS  PubMed  Google Scholar 

  • Wang L, Kamath A, Das H, Li L, Bukowski JF (2001) Antibacterial effect of human V gamma 2V delta 2 T cells in vivo. J Clin Invest 108:1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Webb GC, Lee JS, Campbell HD, Young IG (1989) The genes for interleukins 3 and 5 map to the same locus on mouse chromosome 11. Cytogenet Cell Genet 50:107–110

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Fujihashi K, Beagley KW, McGhee JR, Kiyono H (1993) Cytokine synthesis by intestinal intraepithelial lymphocytes. Both gamma/delta T cell receptor-positive and alpha/beta T cell receptor-positive T cells in the G1 phase of cell cycle produce IFN-gamma and IL-5. J Immunol 150:106–114

    CAS  PubMed  Google Scholar 

  • Yokota T, Coffman RL, Hagiwara H, Rennick DM, Takebe Y, Yokota K, Gemmell L, Shrader B, Yang G, Meyerson P, et al. (1987) Isolation and characterization of lymphokine cDNA clones encoding mouse and human IgA-enhancing factor and eosinophil colony-stimulating factor activities: relationship to interleukin 5. Proc Natl Acad Sci USA 84:7388–7392

    CAS  PubMed  Google Scholar 

  • Zuany-Amorim C, Ruffie C, Haile S, Vargaftig BB, Pereira P, Pretolani M (1998) Requirement for gammadelta T cells in allergic airway inflammation. Science 280:1265–1267

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Ms. A. Karvonen, M. Kuusimurto and J. Matsson are acknowledged for their excellent technical assistance. This project was financially supported by the Academy of Finland, the Finnish Medical Society Duodecim, Turku University Foundation, the Finnish Medical Foundation, Turku Graduate School of Biomedical Sciences and EU program BIOTECH (BIO4-CT97-2706).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimmo Koskela.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koskela, K., Kohonen, P., Salminen, H. et al. Identification of a novel cytokine-like transcript differentially expressed in avian γδ T cells. Immunogenetics 55, 845–854 (2004). https://doi.org/10.1007/s00251-004-0643-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00251-004-0643-8

Keywords

Navigation