Skip to main content

Advertisement

Log in

Solution structure and backbone dynamics for S1 domain of ribosomal protein S1 from Mycobacterium tuberculosis

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The pro-drug pyrazinamide is hydrolyzed to pyrazinoic acid (POA) in its use for the treatment of tuberculosis. As a molecule with bactericidal activity, POA binds to the C-terminal S1 domain of ribosomal protein S1 from Mycobacterium tuberculosis (MtRpsACTD_S1) to inhibit trans-translation. Trans-translation is a critical component of protein synthesis quality control, and is mediated by transfer-messenger RNA. Here, we have determined the solution structure of MtRpsACTD_S1(280–368), and analyzed its structural dynamics by NMR spectroscopy. The solution structure of MtRpsACTD_S1(280–368) mainly consists of five anti-parallel β strands, two α helices, and two 310 helices. Backbone dynamics reveals that the overall structure of MtRpsACTD_S1(280–368) is rigid, but segment L326–V333 undergoes large amplitude fluctuations on picosecond to nanosecond time scales. In addition, residues V321, H322, V331 and D335 with large Rex values exhibit significant chemical or conformational exchange on microsecond to millisecond time scale. Titration of the truncated MtRpsACTD_S1(280–368) with POA shows similar characteristics to titration of MtRpsACTD_S1(280–438) with POA. In addition, diverse length fragments of MtRpsACTD_S1 show various HN resonance signals, and we find that the interaction of MtRpsA(369–481) with MtRpsACTD_S1(280–368) [Kd = (4.25 ± 0.15) mM] is responsible for the structural difference between MtRpsACTD_S1(280–368) and MtRpsACTD_S1. This work may shed light on the underlying molecular mechanism of MtRpsACTD recognizing and binding POA or mRNA, as well as the detailed mechanism of interactions between MtRpsACTD_S1(280–368) and the additional C-terminal MtRpsA(369–481).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

M. tb :

Mycobacterium tuberculosis

RpsA:

Ribosomal protein S1

MtRpsA:

Ribosomal protein S1 of M. tb

MtRpsACTD_S1:

The C-terminal S1 domain of MtRpsA

MtRpsACTD_S1(280–368):

The region Q280–D368 of MtRpsACTD_S1

MtRpsACTD_S1(280–433):

The residues 280–433 of MtRpsA

MtRpsACTD_S1(280–438):

The residues 280–438 of MtRpsA

MtRpsACTD_S1(280–467):

The residues 280–467 of MtRpsA

MtRpsA(369–481):

The residues 369–481 of MtRpsA

MtRpsA(401–439):

The residues 401–439 of MtRpsA

MtRpsACTD ΔA438 :

An alanine deletion of MtRpsACTD_S1

tmRNA:

Transfer-messenger RNA

PZA:

Pyrazinamide

POA:

Pyrazinoic acid

R 1 :

Longitudinal relaxation rate

R 2 :

Transverse relaxation rate

NOE:

Nuclear Overhauser effect

HSQC:

Heteronuclear singular quantum correlation

RMSD:

Root-mean-square deviation

S 2 :

The square of generalized order parameters

R ex :

Conformational exchange rate

τ m :

The overall rotation correlation time

τ e :

Effective internal correlation time

Kd:

Dissociation constant

References

  • Abo T, Inada T, Ogawa K, Aiba H (2000) SsrA-mediated tagging and proteolysis of LacI and its role in the regulation of lac operon. EMBO J 19:3762–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr PA, Erickson HP, Palmer AG 3rd (1997) Backbone dynamics of homologous fibronectin type III cell adhesion domains from fibronectin and tenascin. Structure 5:949–959

    Article  CAS  PubMed  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax AD (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  CAS  PubMed  Google Scholar 

  • Duval M, Korepanov A, Fuchsbauer O, Fechter P, Haller A, Fabbretti A, Choulier L, Micura R, Klaholz BP, Romby P, Springer M, Marzi S (2013) Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation. PLoS Biol 11:e1001731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan H, Mark AE (2004) Refinement of homology-based protein structures by molecular dynamics simulation techniques. Protein Sci Publ Protein Soc 13:211–220

    Article  CAS  Google Scholar 

  • Fu J, Huang B, Lin D, Liao X (2017) Chemical shift assignments of Ribosomal protein S1 from Mycobacterium tuberculosis. Biomol NMR Assign 11:133–136

    Article  CAS  PubMed  Google Scholar 

  • Gill ML, Byrd RA, Palmer AG III (2016) Dynamics of GCN4 facilitate DNA interaction: a model-free analysis of an intrinsically disordered region. Phys Chem Chem Phys 18:5839–5849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang B, Fu J, Guo C, Wu X, Lin D, Liao X (2016) (1)H, (15)N, (13)C resonance assignments for pyrazinoic acid binding domain of ribosomal protein S1 from Mycobacterium tuberculosis. Biomol NMR Assign 10:321–324

    Article  CAS  PubMed  Google Scholar 

  • Janssen BD, Hayes CS (2012) The tmRNA ribosome-rescue system. Adv Protein Chem Struct Biol 86:151–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keiler KC (2008) Biology of trans-translation. Annu Rev Microbiol 62:133–151

    Article  CAS  PubMed  Google Scholar 

  • Kempf JG, Loria JP (2003) Protein dynamics from solution NMR: theory and applications. Cell Biochem Biophys 37:187–211

    Article  PubMed  Google Scholar 

  • Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  • Mandel AM, Akke M, Palmer AG (1995) Backbone dynamics of Escherichia coli ribonuclease Hi—correlations with structure and function in an active enzyme. J Mol Biol 246:144–163

    Article  CAS  PubMed  Google Scholar 

  • McGinness KE, Sauer RT (2004) Ribosomal protein S1 binds mRNA and tmRNA similarly but plays distinct roles in translation of these molecules. Proc Natl Acad Sci USA 101:13454–13459

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee M, Dutta K, White MA, Cowburn D, Fox RO (2006) NMR solution structure and backbone dynamics of domain III of the E protein of tick-borne Langat flavivirus suggests a potential site for molecular recognition. Protein Sci Publ Protein Society 15:1342–1355

    Article  CAS  Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rieping W, Habeck M, Bardiaux B, Bernard A, Malliavin TE, Nilges M (2007) ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinform (Oxf, Engl) 23:381–382

    Article  CAS  Google Scholar 

  • Saguy M, Gillet R, Skorski P, Hermann-Le Denmat S, Felden B (2007) Ribosomal protein S1 influences trans-translation in vitro and in vivo. Nucleic Acids Res 35:2368–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salah P, Bisaglia M, Aliprandi P, Uzan M, Sizun C, Bontems F (2009) Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis. Nucleic Acids Res 37:5578–5588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+ : a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi (2011) pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science

  • Shojania S, O’Neil JD (2006) HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy. J Biol Chem 281:8347–8356

    Article  CAS  PubMed  Google Scholar 

  • Sorensen MA, Fricke J, Pedersen S (1998) Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J Mol Biol 280:561–569

    Article  CAS  PubMed  Google Scholar 

  • Williams KP (2002) The tmRNA Website: invasion by an intron. Nucleic Acids Res 30:179–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu Y, Bi J, Cai Q, Liao X, Li W, Guo C, Zhang Q, Lin T, Zhao Y, Wang H, Liu J, Zhang X, Lin D (2015) Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol Microbiol 95:791–803

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Deng JY, Bi LJ, Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE (2008) Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. The FEBS journal 275:753–762

    Article  CAS  PubMed  Google Scholar 

  • Zhi Y, Dai Y, Yang J, Tan S, Lin D, Lin K (2019) Lead compounds and key residues of ribosomal protein S1 in drug-resistant Mycobacterium tuberculosis. Bioorg Chem 82:58–67

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Key Research and Development Program of China (2016YFA0500600) and the National Natural Science Foundation of China (31270777, 21778042, 41876072, 91856126). I would like to thank Mr. Xingxing for taking me around the world by bike every day, and BEST WISHES FOR YOU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufen Zhao, Donghai Lin or Xinli Liao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, B., Fan, S., Liu, Y. et al. Solution structure and backbone dynamics for S1 domain of ribosomal protein S1 from Mycobacterium tuberculosis. Eur Biophys J 48, 491–501 (2019). https://doi.org/10.1007/s00249-019-01372-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-019-01372-5

Keywords

Navigation