Skip to main content

Advertisement

Log in

Interaction studies of a protein and carbohydrate system using an integrated approach: a case study of the miniagrin–heparin system

  • Original Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The major challenges in biophysical characterization of human protein–carbohydrate interactions are obtaining monodispersed preparations of human proteins that are often post-translationally modified and lack of detection of carbohydrates by traditional detection systems. Light scattering (dynamic and static) techniques offer detection of biomolecules and their complexes based on their size and shape, and do not rely on chromophore groups (such as aromatic amino acid sidechains). In this study, we utilized dynamic light scattering, analytical ultracentrifugation and small-angle X-ray scattering techniques to investigate the solution properties of a complex resulting from the interaction between a 15 kDa heparin preparation and miniagrin, a miniaturized version of agrin. Results from dynamic light scattering, sedimentation equilibrium, and sedimentation velocity experiments signify the formation of a monodisperse complex with 1:1 stoichiometry, and low-resolution structures derived from the small-angle X-ray scattering measurements implicate an extended conformation for a side-by-side miniagrin‒heparin complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Campanelli JT, Gayer GG, Scheller RH (1996) Alternative RNA splicing that determines agrin activity regulates binding to heparin and alpha-dystroglycan. Development 122:1663–1672

    CAS  PubMed  Google Scholar 

  • Cohn EJ, Edsall JT (1943) Proteins, amino acids and peptides as ions and dipolar ions. Reinhold, New York

    Google Scholar 

  • Dam J, Schuck P (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol 384:185–212

    Article  CAS  Google Scholar 

  • Denzer AJ, Brandenberger R, Gesemann M, Chiquet M, Ruegg MA (1997) Agrin binds to the nerve-muscle basal lamina via laminin. J Cell Biol 137:671–683

    Article  CAS  Google Scholar 

  • Devetzis V, Daryadel A, Roumeliotis S, Theodoridis M, Wagner CA, Hettwer S, Huynh-Do U, Ploumis P, Arampatzis S (2015) C-terminal fragment of agrin (CAF): a novel marker for progression of kidney disease in iype 2 diabetics. PLoS One 10:e0143524

    Article  Google Scholar 

  • Garcia De La Torre J, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Article  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571

    Chapter  Google Scholar 

  • Gesemann M, Cavalli V, Denzer AJ, Brancaccio A, Schumacher B, Ruegg MA (1996) Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor. Neuron 16:755–767

    Article  CAS  Google Scholar 

  • Guinier A, Fourner G (1955) Small angle scattering of X-rays. Wiley, New York

    Google Scholar 

  • Hall DR, Harding SE, Winzor DJ (1999) On the correct analysis of low-speed sedimentation equilibrium distributions recorded by the Rayleigh interference optical system in a Beckman XL-I ultracentrifuge. Prog Colloid Polym Sci 113:62–68

    Article  CAS  Google Scholar 

  • Jeffrey PD, Nichol LW, Teasdale RD (1979) Studies of macromolecular heterogeneous associations involving cross-linking: a re-examination of the ovalbumin-lysozyme system. Biophys Chem 10:379–387

    Article  CAS  Google Scholar 

  • Kammerer RA, Schulthess T, Landwehr R, Schumacher B, Lustig A, Yurchenco PD, Ruegg MA, Engel J, Denzer AJ (1999) Interaction of agrin with laminin requires a coiled-coil conformation of the agrin-binding site within the laminin gamma1 chain. EMBO J18:6762–6770

    Article  Google Scholar 

  • Kawahara R, Granato DC, Carnielli CM, Cervigne NK, Oliveria CE, Rivera C, Yokoo S, Fonseca FP, Lopes M, Santos-Silva AR, Graner E, Coletta RD, Paes Leme AF (2014) Agrin and perlecan mediate tumorigenic processes in oral squamous cell carcinoma. PLoS One 9:e115004

    Article  Google Scholar 

  • Kim MJ, Cotman SL, Halfter W, Cole GJ (2003) The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2. J Neurobiol 55:261–277

    Article  CAS  Google Scholar 

  • Kim MJ, Liu IH, Song Y, Lee JA, Halfter W, Balice-Gordon RJ, Linney E, Cole GJ (2007) Agrin is required for posterior development and motor axon outgrowth and branching in embryonic zebrafish. Glycobiology 17:231–247

    Article  CAS  Google Scholar 

  • Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, Hubbard SR, Dustin ML, Burden SJ (2008) Lrp4 Is a receptor for agrin and forms a complex with MuSK. Cell 135:334–342

    Article  CAS  Google Scholar 

  • Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr 36:1277–1282

    Article  CAS  Google Scholar 

  • Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Crystallogr 39:277–286

    Article  CAS  Google Scholar 

  • Lasker SE, Stivala SS (1966) Physicochemical studies of fractionated bovine heparin. I. Some dilute solution properties. Arch Biochem Biophys 115:360–372

    Article  CAS  Google Scholar 

  • Liu IH, Zhang C, Kim MJ, Cole GJ (2008) Retina development in zebrafish requires the heparan sulfate proteoglycan agrin. Dev Neurobiol 68:877–898

    Article  CAS  Google Scholar 

  • Malmon AG (1957) Small-angle X-ray scattering functions for ellipsoids of revolution and right circular cylinders. Acta Crystallogr 10:639–642

    Article  CAS  Google Scholar 

  • Mascarenhas JB, Ruegg MA, Winzen U, Halfter W, Engel J, Stetefeld J (2003) Mapping of the laminin-binding site of the N-terminal agrin domain (NtA). EMBO J 22:529–536

    Article  CAS  Google Scholar 

  • McFarlane AA, Stetefeld J (2009) An interdomain disulfide bridge links the NtA and first FS domain in agrin. Protein Sci 18:2421–2428

    Article  CAS  Google Scholar 

  • Meinen S, Barzaghi P, Lin S, Lochmuller H, Ruegg MA (2007) Linker molecules between laminins and dystroglycan ameliorate laminin-alpha2-deficient muscular dystrophy at all disease stages. J Cell Biol 176:979–993

    Article  CAS  Google Scholar 

  • Moll J, Barzaghi P, Lin S, Bezakova G, Lochmuller H, Engvall E, Muller U, Ruegg MA (2001) An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature 413:302–307

    Article  CAS  Google Scholar 

  • Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478

    Article  CAS  Google Scholar 

  • O’Toole JJ, Deyst KA, Bowe MA, Nastuk MA, McKechnie BA, Fallon JR (1996) Alternative splicing of agrin regulates its binding to heparin, alpha -dystroglycan, and the cell surface. Proc Nat Acad Sci USA 93:7369–7374

    Article  Google Scholar 

  • Patel TR, Morris GA, Zwolanek D, Koch M, Harding SE, Stetefeld J (2010) Nano-structure of the laminin gamma-1 short arm reveals an extended and curved multidomain assembly. Matrix Biol 29:565–572

    Article  CAS  Google Scholar 

  • Patel TR, Besong TMD, Patel N, Meier M, Harding SE, Winzor DJ, Stetefeld J (2011a) Evidence for self-association of a miniaturized version of agrin from hydrodynamic and small-angle X-ray scattering measurements. J Phys Chem B 115:11286–11293

    Article  CAS  Google Scholar 

  • Patel TR, Meier M, Li J, Morris G, Rowe AJ, Stetefeld J (2011b) T-shaped arrangement of the recombinant agrin G3—IgG Fc protein. Protein Sci 20:931–940

    Article  CAS  Google Scholar 

  • Patel TR, Butler G, McFarlane A, Xie I, Overall CM, Stetefeld J (2012a) Site specific cleavage mediated by MMPs regulates function of agrin. PLoS One 7:e43669

    Article  CAS  Google Scholar 

  • Patel TR, Reuten R, Xiong S, Meier M, Winzor DJ, Koch M, Stetefeld J (2012b) Determination of a molecular shape for netrin-4 from hydrodynamic and small angle X-ray scattering measurements. Matrix Biol 31:135–140

    Article  CAS  Google Scholar 

  • Patel TR, Bernards C, Meier M, McEleney K, Winzor DJ, Koch M, Stetefeld J (2014) Structural elucidation of full-length nidogen and the laminin-nidogen complex in solution. Matrix Biol 33:60–67

    Article  CAS  Google Scholar 

  • Reist NE, Magill C, McMahan UJ (1987) Agrin-like molecules at synaptic sites in normal, denervated, and damaged skeletal muscles. J Cell Biol 105:2457–2469

    Article  CAS  Google Scholar 

  • Rupp F, Payan DG, Magill-Solc C, Cowan DM, Scheller RH (1991) Structure and expression of a rat agrin. Neuron 6:811–823

    Article  CAS  Google Scholar 

  • Schuck P (1998) Sedimentation analysis of noninteracting and self-associating solutes using numerical solutions to the Lamm equation. Biophys J 75:1503–1512

    Article  CAS  Google Scholar 

  • Scotton P, Bleckmann D, Stebler M, Sciandra F, Brancaccio A, Meier T, Stetefeld J, Ruegg MA (2006) Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin. J Biol Chem 281:36835–36845

    Article  CAS  Google Scholar 

  • Smith MA, Yao YM, Reist NE, Magill C, Wallace BG, McMahan UJ (1987) Identification of agrin in electric organ extracts and localization of agrin-like molecules in muscle and central nervous system. J Exp Biol 132:223–230

    CAS  PubMed  Google Scholar 

  • Stetefeld J, Ruegg MA (2005) Structural and functional diversity generated by alternative mRNA splicing. Trends Biochem Sci 30:515–521

    Article  CAS  Google Scholar 

  • Stetefeld J, Jenny M, Schulthess T, Landwehr R, Schumacher B, Frank S, Ruegg MA, Engel J, Kammerer RA (2001) The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nat Struct Biol 8:705–709

    Article  CAS  Google Scholar 

  • Stetefeld J, Alexandrescu AT, Maciejewski MW, Jenny M, Rathgeb-Szabo K, Schulthess T, Landwehr R, Frank S, Ruegg MA, Kammerer RA (2004) Modulation of Agrin function by alternative splicing and Ca2+ binding. Structure 12:503–515

    Article  CAS  Google Scholar 

  • Stetefeld J, McKenna SA, Patel TR (2016) Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev 8:409–427

    Article  CAS  Google Scholar 

  • Steubl D, Hettwer S, Vrijbloed W, Dahinden P, Wolf P, Luppa P, Wagner CA, Renders L, Heemann U, Roos M (2013) C-terminal agrin fragment–a new fast biomarker for kidney function in renal transplant recipients. Am J Nephrol 38:501–508

    Article  CAS  Google Scholar 

  • Sugiyama J, Bowen DC, Hall ZW (1994) Dystroglycan binds nerve and muscle agrin. Neuron 13:103–115

    Article  CAS  Google Scholar 

  • Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Crystallog 25:495–503

    Article  CAS  Google Scholar 

  • Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879–2886

    Article  CAS  Google Scholar 

  • Tatrai P, Dudas J, Batmunkh E, Mathe M, Zalatnai A, Schaff Z, Ramadori G, Kovalszky I (2006) Agrin, a novel basement membrane component in human and rat liver, accumulates in cirrhosis and hepatocellular carcinoma. Lab Invest 86:1149–1160

    CAS  PubMed  Google Scholar 

  • Tsen G, Halfter W, Kroger S, Cole GJ (1995) Agrin is a heparan sulfate proteoglycan. J Biol Chem 270:3392–3399

    Article  CAS  Google Scholar 

  • Wills PR, Comper WD, Winzor DJ (1993) Thermodynamic nonideality in macromolecular solutions: interpretation of virial coefficients. Arch Biochem Biophys 300:206–212

    Article  CAS  Google Scholar 

  • Wills PR, Jacobsen MP, Winzor DJ (1996) Direct analysis of solute self-association by sedimentation equilibrum. Biopolymers 38:119–130

    Article  CAS  Google Scholar 

  • Wilson EK, Scrutton NS, Cölfen H, Harding SE, Jacobsen MP, Winzor DJ (1997) An ultracentrifugal approach to quantitative characterization of the molecular assembly of a physiological electron-transfer complex. The interaction of electron-transferring flavoprotein with trimethylamine dehydrogenase. Eur J Biochem 243:393–399

    Article  CAS  Google Scholar 

  • Yphantis DA (1964) Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3:297–317

    Article  CAS  Google Scholar 

Download references

Acknowledgements

TRP thanks the Canadian Institutes of Health Research for PDF. He is a Canada Research Chair in RNA and Protein Biophysics. JS holds the Canada Research Chair in Structural Biology and Biophysics. Professor Markus Ruegg kindly provided the minagrin gene.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Trushar R. Patel or Jörg Stetefeld.

Additional information

Special Issue: 23rd International AUC Workshop and Symposium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, T.R., Besong, T.M.D., Meier, M. et al. Interaction studies of a protein and carbohydrate system using an integrated approach: a case study of the miniagrin–heparin system. Eur Biophys J 47, 751–759 (2018). https://doi.org/10.1007/s00249-018-1291-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-018-1291-5

Keywords

Navigation