Skip to main content
Log in

Spectroscopic and thermodynamic properties of recombinant heat shock protein A6 from Camelus dromedarius

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Heat shock protein A6, also known as HSP70B’, is a member of the Hsp70 family of molecular chaperones. Under stressed conditions, the level of HSPA6 increases substantially, and the protein has been targeted as a biomarker of cellular stress in several studies. We report the spectroscopic and thermodynamic properties of Arabian camel species cHSPA6, determined by measurement of intrinsic and extrinsic fluorescence emission, and use of far-UV circular dichroism and dynamic multimode spectroscopy. Our results showed that cHSPA6 has similar binding affinity for both ATP and ADP (K D = ~50 nM). Binding of ATP and ADP reduced the surface hydrophobicity of the protein, and slightly altered its secondary structure, suggesting localized conformational rearrangement after ATP or ADP binding. Dynamic multimode spectroscopy revealed that cHSPA6 unfolds through three transitions with melting points (T m) of 42.3 ± 0.2, 61.3 ± 0.1, and 81.2 ± 0.2 °C. To the best of the author’s knowledge, and literature search, this is the first report of the spectroscopic and thermodynamic properties of the Arabian camel heat shock protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Amp:

Ampicillin

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

Em:

Emission

Ex:

Excitation

FPLC:

Fast protein liquid chromatography

GdnHCl:

Guanidinium hydrochloride

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

K D :

Dissociation constant

LB:

Luria–Bertani

2XLB:

Double strength Luria–Bertani

NB:

Nutrient broth

MWCO:

Molecular weight cut off

Ni-NTA:

Nickel-nitrilotriacetic acid

NBD:

Nucleotide binding domain

OD600 :

Optical density at 600 nm

PMSF:

Phenylmethylsulfonyl fluoride

rpm:

Rotation per minute

SBD:

Substrate binding domain

TB:

Terrific broth

T m :

Melting temperature

References

  • Banecki B, Zylicz M, Bertoli E, Tanfani F (1992) Structural and functional relationships in DnaK and DnaK756 heat-shock proteins from Escherichia coli. J Biol Chem 267:25051–25058

    CAS  PubMed  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2:469–475

    Article  CAS  PubMed  Google Scholar 

  • Benjamin IJ, McMillan DR (1998) Stress (heat shock) proteins: molecular chaperones in cardiovascular biology and disease. Circ Res 83:117–132

    Article  CAS  PubMed  Google Scholar 

  • Bohm G, Muhr R, Jaenicke R (1992) Quantitative analysis of protein far UV circular dichroism spectra by neural networks. Protein Eng 5:191–195

    Article  CAS  PubMed  Google Scholar 

  • Borges JC, Ramos CH (2005) Protein folding assisted by chaperones. Protein Pept Lett 12:257–261

    Article  CAS  PubMed  Google Scholar 

  • Borges JC, Ramos CH (2006) Spectroscopic and thermodynamic measurements of nucleotide-induced changes in the human 70-kDa heat shock cognate protein. Arch Biochem Biophys 452:46–54

    Article  CAS  PubMed  Google Scholar 

  • Borges JC, Fischer H, Craievich AF, Ramos CH (2005) Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily A and DJB4 from subfamily B have different quaternary structures. J Biol Chem 280:13671–13681

    Article  CAS  PubMed  Google Scholar 

  • Brown GC (1991) Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells. J Theor Biol 153:195–203

    Article  CAS  PubMed  Google Scholar 

  • Buchberger A, Theyssen H, Schroder H, McCarty JS, Virgallita G, Milkereit P, Reinstein J, Bukau B (1995) Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J Biol Chem 270:16903–16910

    Article  CAS  PubMed  Google Scholar 

  • Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366

    Article  CAS  PubMed  Google Scholar 

  • Cheetham ME, Caplan AJ (1998) Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deuerling E, Patzelt H, Vorderwulbecke S, Rauch T, Kramer G, Schaffitzel E, Mogk A, Schulze-Specking A, Langen H, Bukau B (2003) Trigger Factor and DnaK possess overlapping substrate pools and binding specificities. Mol Microbiol 47:1317–1328

    Article  CAS  PubMed  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Edelhoch H (1967) Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6:1948–1954

    Article  CAS  PubMed  Google Scholar 

  • Elrobh MS, Alanazi MS, Khan W, Abduljaleel Z, Al-Amri A, Bazzi MD (2011) Molecular cloning and characterization of cDNA encoding a putative stress-induced heat-shock protein from Camelus dromedarius. Int J Mol Sci 12:4214–4236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan CY, Lee S, Ren HY, Cyr DM (2004) Exchangeable chaperone modules contribute to specification of type I and type II Hsp40 cellular function. Mol Biol Cell 15:761–773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628

    Article  CAS  PubMed  Google Scholar 

  • Flynn GC, Chappell TG, Rothman JE (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245:385–390

    Article  CAS  PubMed  Google Scholar 

  • Freeman BC, Myers MP, Schumacher R, Morimoto RI (1995) Identification of a regulatory motif in Hsp70 that affects ATPase activity, substrate binding and interaction with HDJ-1. EMBO J 14:2281–2292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao B, Greene L, Eisenberg E (1994) Characterization of nucleotide-free uncoating ATPase and its binding to ATP, ADP, and ATP analogues. Biochemistry 33:2048–2054

    Article  CAS  PubMed  Google Scholar 

  • Gragerov A, Zeng L, Zhao X, Burkholder W, Gottesman ME (1994) Specificity of DnaK-peptide binding. J Mol Biol 235:848–854

    Article  CAS  PubMed  Google Scholar 

  • Ha JH, McKay DB (1994) ATPase kinetics of recombinant bovine 70 kDa heat shock cognate protein and its amino-terminal ATPase domain. Biochemistry 33:14625–14635

    Article  CAS  PubMed  Google Scholar 

  • Heldens L, Dirks RP, Hensen SM, Onnekink C, van Genesen ST, Rustenburg F, Lubsen NH (2010) Co-chaperones are limiting in a depleted chaperone network. Cell Mol Life Sci 67:4035–4048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang SP, Tsai MY, Tzou YM, Wu WG, Wang C (1993) Aspartyl residue 10 is essential for ATPase activity of rat hsc70. J Biol Chem 268:2063–2068

    CAS  PubMed  Google Scholar 

  • Klostermeier D, Seidel R, Reinstein J (1998) Functional properties of the molecular chaperone DnaK from Thermus thermophilus. J Mol Biol 279:841–853

    Article  CAS  PubMed  Google Scholar 

  • Leung TK, Rajendran MY, Monfries C, Hall C, Lim L (1990) The human heat-shock protein family. Expression of a novel heat-inducible HSP70 (HSP70B’) and isolation of its cDNA and genomic DNA. Biochem J 267:125–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu C, Young AL, Starling-Windhof A, Bracher A, Saschenbrecker S, Rao BV, Rao KV, Berninghausen O, Mielke T, Hartl FU, Beckmann R, Hayer-Hartl M (2010) Coupled chaperone action in folding and assembly of hexadecameric Rubisco. Nature 463:197–202

    Article  CAS  PubMed  Google Scholar 

  • Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62:670–684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer MP, Brehmer D, Gassler CS, Bukau B (2001) Hsp70 chaperone machines. Adv Protein Chem 59:1–44

    Article  CAS  PubMed  Google Scholar 

  • Moffatt BA, Studier FW (1987) T7 lysozyme inhibits transcription by T7 RNA polymerase. Cell 49:221–227

    Article  CAS  PubMed  Google Scholar 

  • Montgomery DL, Morimoto RI, Gierasch LM (1999) Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling. J Mol Biol 286:915–932

    Article  CAS  PubMed  Google Scholar 

  • Morano KA (2007) New tricks for an old dog: the evolving world of Hsp70. Ann N Y Acad Sci 1113:1–14

    Article  CAS  PubMed  Google Scholar 

  • Moro F, Fernandez V, Muga A (2003) Interdomain interaction through helices A and B of DnaK peptide binding domain. FEBS Lett 533:119–123

    Article  CAS  PubMed  Google Scholar 

  • Moro F, Fernandez-Saiz V, Muga A (2006) The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Protein Sci 15:223–233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishikawa M, Takemoto S, Takakura Y (2008) Heat shock protein derivatives for delivery of antigens to antigen presenting cells. Int J Pharm 354:23–27

    Article  CAS  PubMed  Google Scholar 

  • Palleros DR, Welch WJ, Fink AL (1991) Interaction of hsp70 with unfolded proteins: effects of temperature and nucleotides on the kinetics of binding. Proc Natl Acad Sci USA 88:5719–5723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palleros DR, Reid KL, Shi L, Welch WJ, Fink AL (1993) ATP-induced protein-Hsp70 complex dissociation requires K + but not ATP hydrolysis. Nature 365:664–666

    Article  CAS  PubMed  Google Scholar 

  • Parsian AJ, Sheren JE, Tao TY, Goswami PC, Malyapa R, Van Rheeden R, Watson MS, Hunt CR (2000) The human Hsp70B gene at the HSPA7 locus of chromosome 1 is transcribed but non-functional. Biochim Biophys Acta 1494:201–205

    Article  CAS  PubMed  Google Scholar 

  • Prendergast FG, Hampton PD, Jones B (1984) Characteristics of tyrosinate fluorescence emission in alpha- and beta-purothionins. Biochemistry 23:6690–6697

    Article  CAS  PubMed  Google Scholar 

  • Rao MV, Atreyi M, Rajeswari MR (1981) Fluorescence spectra of lysozyme excited at 305 NM in presence of urea. Int J Pept Protein Res 17:205–210

    Article  CAS  PubMed  Google Scholar 

  • Revington M, Zhang Y, Yip GN, Kurochkin AV, Zuiderweg ER (2005) NMR investigations of allosteric processes in a two-domain Thermus thermophilus Hsp70 molecular chaperone. J Mol Biol 349:163–183

    Article  CAS  PubMed  Google Scholar 

  • Rist W, Graf C, Bukau B, Mayer MP (2006) Amide hydrogen exchange reveals conformational changes in hsp70 chaperones important for allosteric regulation. J Biol Chem 281:16493–16501

    Article  CAS  PubMed  Google Scholar 

  • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruan K, Li J, Liang R, Xu C, Yu Y, Lange R, Balny C (2002) A rare protein fluorescence behavior where the emission is dominated by tyrosine: case of the 33-kDa protein from spinach photosystem II. Biochem Biophys Res Commun 293:593–597

    Article  CAS  PubMed  Google Scholar 

  • Russell R, Jordan R, McMacken R (1998) Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Biochemistry 37:596–607

    Article  CAS  PubMed  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    Article  CAS  PubMed  Google Scholar 

  • Schonfeld HJ, Behlke J (1998) Molecular chaperones and their interactions investigated by analytical ultracentrifugation and other methodologies. Methods Enzymol 290:269–296

    Article  CAS  PubMed  Google Scholar 

  • Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol Cell 26:27–39

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teale FW (1960) The ultraviolet fluorescence of proteins in neutral solution. Biochem J 76:381–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theyssen H, Schuster HP, Packschies L, Bukau B, Reinstein J (1996) The second step of ATP binding to DnaK induces peptide release. J Mol Biol 263:657–670

    Article  CAS  PubMed  Google Scholar 

  • Vogel M, Bukau B, Mayer MP (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 21:359–367

    Article  CAS  PubMed  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  CAS  PubMed  Google Scholar 

  • Wada K, Taniguchi A, Xu L, Okano T (2005) Rapid and highly sensitive detection of cadmium chloride induced cytotoxicity using the HSP70B’ promoter in live cells. Biotechnol Bioeng 92:410–415

    Article  CAS  PubMed  Google Scholar 

  • Walmsley AR, Martin GE, Henderson PJ (1994) 8-Anilino-1-naphthalenesulfonate is a fluorescent probe of conformational changes in the D-galactose-H+ symport protein of Escherichia coli. J Biol Chem 269:17009–17019

    CAS  PubMed  Google Scholar 

  • Walter S, Buchner J (2002) Molecular chaperones–cellular machines for protein folding. Angew Chem Int Ed Engl 41:1098–1113

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Li Y, Yang G, Subjeck JR (2005) Current ideas about applications of heat shock proteins in vaccine design and immunotherapy. Int J Hyperth 21:717–722

    Article  CAS  Google Scholar 

  • Wegele H, Muller L, Buchner J (2004) Hsp70 and Hsp90–a relay team for protein folding. Rev Physiol Biochem Pharmacol 151:1–44

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Hunt C, Morimoto R (1985) Structure and expression of the human gene encoding major heat shock protein HSP70. Mol Cell Biol 5:330–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu SJ, Liu FH, Hu SM, Wang C (2001) Different combinations of the heat-shock cognate protein 70 (hsc70) C-terminal functional groups are utilized to interact with distinct tetratricopeptide repeat-containing proteins. Biochem J 359:419–426

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 20:4634–4638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia, for funding this work through project # A-C-11-0606.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajamaluddin Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Haroon, A., Jagirdar, H. et al. Spectroscopic and thermodynamic properties of recombinant heat shock protein A6 from Camelus dromedarius . Eur Biophys J 44, 17–26 (2015). https://doi.org/10.1007/s00249-014-0997-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-014-0997-2

Keywords

Navigation