Skip to main content
Log in

An additional substrate binding site in a bacterial phenylalanine hydroxylase

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes oxidation of phenylalanine to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH has a regulatory domain in which binding of the substrate leads to allosteric activation of the enzyme. However, the existence of PAH regulation in evolutionarily distant organisms, for example some bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum, a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site 15.7 Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 μM for phenylalanine. Under the same conditions, ITC revealed no detectable binding for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of amino acid residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) led to impaired binding, consistent with the presence of distal site binding in solution. Although kinetic analysis revealed that the distal site mutants suffer discernible loss of their catalytic activity, X-ray crystallographic analysis of Y155A and F258A, the two mutants with the most noticeable decrease in activity, revealed no discernible change in the structure of their active sites, suggesting that the effect of distal binding may result from protein dynamics in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PAH:

Phenylalanine hydroxylase

BH4 :

(6R)-5,6,7,8-tetrahydrobiopterin dihydrochloride

PKU:

Phenylketonuria

cPAH:

Phenylalanine hydroxylase from Chromobacterium violaceum

hPAH:

Human phenylalanine hydroxylase

RMSD:

Root-mean-square deviation

THA:

3-(2-thienyl)-l-alanine

NLE:

l-Norleucine

Fe:

Iron

Co:

Cobalt

DMPH4 :

6,7-Dimethyltetrahydropterin

References

  • Abu-Omar MM, Loaiza A, Hontzeas N (2005) Reaction mechanisms of mononuclear non-heme iron oxygenases. Chem Rev 105:2227–2252

    Article  PubMed  CAS  Google Scholar 

  • Adler-Abramovich L, Vaks L, Carny O, Trudler D, Magno A, Caflisch A, Frenkel D, Gazit E (2012) Phenylalanine assembly into toxic fibrils suggests amyloid etiology in phenylketonuria. Nat Chem Biol 8:701–706

    Article  PubMed  CAS  Google Scholar 

  • Andersen OA, Flatmark T, Hough E (2002) Crystal structure of the ternary complex of the catalytic domain of human phenylalanine hydroxylase with tetrahydrobiopterin and 3-(2-thienyl)-l-alanine, and its implications for the mechanism of catalysis and substrate activation. J Mol Biol 320:1095–1108

    Article  PubMed  Google Scholar 

  • Andersen OA, Stokka AJ, Flatmark T, Hough E (2003) 2.0 Ǻ resolution crystal structures of the ternary complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-Thienyl)-l-alanine or l-Norleucine: substrate specificity and molecular motions related to substrate binding. J Mol Biol 333:747–757

    Article  PubMed  CAS  Google Scholar 

  • Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  • Broecker J, Vargas C, Keller S (2011) Revisiting the optimal c value for isothermal titration calorimetry. Anal Biochem 418:307–309

    Article  PubMed  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TE III, Simmerling CL, Wang RE et al (2012) AMBER12. University of California, San Francisco

    Google Scholar 

  • Chehin R, Thorolfsson M, Knappskog PM, Martinez A, Flatmark T, Arrondo JL, Muga A (1998) Domain structure and stability of human phenylalanine hydroxylase inferred from infrared spectroscopy. FEBS Lett 422:225–230

    Article  PubMed  CAS  Google Scholar 

  • Citron BA, Davis MD, Kaufman S (1992) Purification and biochemical characterization of recombinant rat liver phenylalanine hydroxylase produced in Escherichia coli. Protein Exp Purif 3:93–100

    CAS  Google Scholar 

  • Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr 50:760–763

    Article  Google Scholar 

  • Cooper A, Dryden DTF (1984) Allostery without conformational change: a plausible model. Eur Biophys J 11:103–109

    Article  PubMed  CAS  Google Scholar 

  • Daubner SC, Hillas PJ, Fitzpatrick P (1997) Characterization of chimeric pterin-dependent hydroxylases: contributions of the regulatory domains of tyrosine and phenylalanine hydroxylase to substrate specificity. Biochemistry 36:11574–115782

    Article  PubMed  CAS  Google Scholar 

  • DeLano WL (2002) The PyMOL Molecular Graphics System. DeLano Scientific, San Carlos, CA, USA

  • Emsley P, Lohkamp B, Scott WG, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H, Kim JY, Patch MG, Han A, Volner A, Abu-Omar MM, Stevens RC (2002) Structural comparison of bacterial and human iron-dependent phenylalanine hydroxylases: similar fold, different stability and reaction rates. J Mol Biol 320:645–661

    Article  PubMed  CAS  Google Scholar 

  • Erlandsen H, Patch MG, Gamez A, Straub M, Stevens RC (2003) Structural studies on phenylalanine hydroxylase and implications toward understanding and treating phenylketonuria. Pediatrics 112:1557–1565

    PubMed  Google Scholar 

  • Fitzpatrick PF (1999) Tetrahydropterin-dependent amino acid hydroxylases. Annu Rev Biochem 68:355–381

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (2003) Mechanism of aromatic amino acid hydroxylation. Biochemistry 42:14083–14091

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick PF (2012) Allosteric regulation of phenylalanine hydroxylase. Arch Biochem Biophys 519:194–201

    Article  PubMed  CAS  Google Scholar 

  • Flatmark T, Stevens RC (1999) Structural insight into the aromatic amino acid hydroxylases and their disease-related mutant forms. Chem Rev 99:2137–2160

    Article  PubMed  CAS  Google Scholar 

  • Flydal MI, Mohn TC, Pey AL, Siltberg-Liberles J, Teigen K, Martinez A (2010) Superstoichiometric binding of l-Phe to phenylalanine hydroxylase from Caenorhabditis elegans: evolutionary implications. Amino Acids 39:1463–1475

    Article  PubMed  CAS  Google Scholar 

  • Fuchs JE, Huber RG, von Grufenstein S, Wallnoefer HG, Spitzer GM, Fuchs D, Liedl KR (2012) Dynamic regulation of phenylalanine hydroxylase by simulated redox manipulation. PLoS ONE 7(12):e53005

    Article  PubMed  CAS  Google Scholar 

  • Fusetti F, Erlandsen H, Flatmark T, Stevens RC (1998) Structure of tetrameric human phenylalanine hydroxylase and its implications for phenylketonuria. J Biol Chem 273:16962–16967

    Article  PubMed  CAS  Google Scholar 

  • Gjetting T, Petersen M, Guldberg P, Guttler F (2001) Missense mutations in the N-terminal domain of phenylalanine hydroxylase interfere with binding of regulatory phenylalanine. Am J Hum Genet 68:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Goetz AW, Williamson MJ, Xu D, Poole D, Le Grand S et al (2012) Routine microsecond molecular dynamics with AMBER—Part I: generalized Born. J Chem Theory Comput 8(5):1542–1555

    Article  Google Scholar 

  • Hardy JA, Wells JA (2004) Searching for new allosteric sites in enzymes. Curr Opin Struct Biol 14:706–715

    Article  PubMed  CAS  Google Scholar 

  • Herrmann KM (1995) The Shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:907–919

    PubMed  CAS  Google Scholar 

  • Horne J, Jennings IG, Teh T, Gooley PR, Kobe B (2002) Structural characterization of the N-terminal autoregulatory sequence of phenylalanine hydroxylase. Protein Sci 11:2041–2047

    Article  PubMed  CAS  Google Scholar 

  • Houtman JC, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P (2007) Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 16:30–42

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Kappock TJ, Cardonna JP (1996) Pterin-dependent amino acid hydroxylases. Chem Rev 96:2659–2756

    Article  PubMed  CAS  Google Scholar 

  • Kaufman S (1993) The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol 67:77–264

    PubMed  CAS  Google Scholar 

  • Knappskog PM, Flatmark T, Aarden JM, Haavik J, Martinez A (1996) Structure/function relationships in human phenylalanine hydroxylase. Effect of terminal deletions on the oligomerization, activation and cooperativity of substrate binding to the enzyme. Eur J Biochem 242:813–821

    Article  PubMed  CAS  Google Scholar 

  • Kobe B, Jennings IG, House CM, Michell BJ, Goodwill KE, Santarsiero BD, Stevens RC, Cotton RGH, Kemp BE (1999) Structural basis of autoregulation of phenylalanine hydroxylase. Nat Struct Biol 6:442–448

    Article  PubMed  CAS  Google Scholar 

  • Labute P (2009) Protonate 3D: assignment of ionization states and hydrogen coordinates to macromolecular structures. Proteins 75(1):187–205

    Article  PubMed  CAS  Google Scholar 

  • Leiros H-KS, Pey AL, Innselset M, Moe E, Leiros I, Steen IH, Martinez A (2007) Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. J Biol Chem 282:21973–21986

    Article  PubMed  CAS  Google Scholar 

  • Li J, Ilangovan U, Daubner SC, Hinck AP, Fitzpatrick PF (2011) Direct evidence for a phenylalanine site in the regulatory domain of phenylalanine hydroxylase. Arch Biochem Biophys 505:250–255

    Article  PubMed  CAS  Google Scholar 

  • Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Dror RO et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958

    PubMed  CAS  Google Scholar 

  • Loaiza A, Armstrong KM, Baker BM, Abu-Omar MM (2008) Kinetics of thermal unfolding of phenylalanine hydroxylase variants containing different metal cofactors (Fe(II), Co(II), and Zn(II)) and their isokinetic relationship. Inorg Chem 47:4877–4883

    Article  PubMed  CAS  Google Scholar 

  • Mayers JR, Fyfe I, Schuh AL, Chapman ER, Edwardson JM, Audhya A (2011) ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously. J Biol Chem 286:9636–9645

    Article  PubMed  CAS  Google Scholar 

  • Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, Winn MD, Long F, Vagin AA (2011) REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr 67:355–367

    Article  PubMed  CAS  Google Scholar 

  • Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. In: Carter CW Jr, Sweet RM (eds) Methods in enzymology, macromolecular crystallography, part A, vol 276. Academic Press, New York

  • Painter J, Merritt EA (2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Cryst D62:439–450

    CAS  Google Scholar 

  • Parniak MA, Kaufman S (1981) Rat liver phenylalanine hydroxylase. Activation by sulfhydryl modification. J Biol Chem 256:6876–6882

    PubMed  CAS  Google Scholar 

  • Phillips RS, Parniak MA, Kaufman S (1984) The interaction of aromatic amino acids with rat liver phenylalanine hydroxylase. J Biol Chem 259:271–277

    PubMed  CAS  Google Scholar 

  • Scriver CR (1995) Whatever happened to PKU? Clin Biochem 28:137–144

    Article  PubMed  CAS  Google Scholar 

  • Singh B (1999) In: Singh K (ed) Plant amino acids: biochemistry and biotechnology, Marcel Dekker, Inc, New York

  • Tsai CJ, Sol AD, Nussinov R (2008) Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 378: 1–11

    Google Scholar 

  • Tzeng SR, Kalodimos CG (2011) Protein dynamics and allostery: an NMR view. Curr Opin Struct Biol 21:62–67

    Article  PubMed  CAS  Google Scholar 

  • Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  • Vasconcelos AT, Almeida DF, Hungria M, Guimarães CT, Antônio RV et al (2003) The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc Natl Acad Sci USA 100:11660–11665

    Article  Google Scholar 

  • Volner A, Zoidakis J, Abu-Omar MM (2003) Order of substrate binding in bacterial phenylalanine hydroxylase and its mechanistic implication for pterin-dependent oxygenases. J Biol Inorg Chem 8:121–128

    Article  PubMed  CAS  Google Scholar 

  • Wallnoefer HG, Handschuh S, Liedl KR, Fox T (2010) Stabilizing of a globular protein by a highly complex water network: a molecular dynamics study on factor Xa. J Phys Chem B 114:7405–7412

    Article  PubMed  CAS  Google Scholar 

  • Zoidakis J, Loaiza A, Vu K, Abu-Omar MM (2005) Effect of temperature, pH, and metals on the stability and activity of phenylalanine hydroxylase from Chromobacterium violaceum. J Inorg Biochem 99(3):771–775

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our hosts Michael Becker, Craig Ogata, Nukri Sanishvili, and Nagarajan Venugopalan at the GM/CA CAT beamline 23-ID-D at the Advanced Photon Source, Argonne National Laboratory. Use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. Julian E. Fuchs is a recipient of a DOC fellowship of the Austrian Academy of Sciences at the University of Innsbruck. The authors acknowledge the High Performance Computing at the University of Innsbruck for providing computer hardware resources for this project. This research was funded by the National Science Foundation (CHE-0749572 to M.M.A.O.) and the National Institutes of Health (1R01RR026273 to C.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chittaranjan Das.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11777 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronau, J.A., Paul, L.N., Fuchs, J.E. et al. An additional substrate binding site in a bacterial phenylalanine hydroxylase. Eur Biophys J 42, 691–708 (2013). https://doi.org/10.1007/s00249-013-0919-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0919-8

Keywords

Navigation