Skip to main content
Log in

Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Thermus thermophilus transcriptional factor TtCarH belongs to a newly discovered class of photoreceptors that use 5′-deoxyadenosylcobalamin (AdoB12) as the light-sensing chromophore. Photoregulation relies on the repressor activity of AdoB12-bound oligomers in the dark, which light counteracts by oligomer disruption due to AdoB12 photolysis. In this study, we investigated TtCarH self-association and binding to DNA in the dark and in the light using analytical ultracentrifugation (AUC) methods, both sedimentation velocity (SV) as well as equilibrium (SE). From a methodological point of view, this study shows that AUC can provide hydrodynamic insights in cases where light is a crucial determinant of solution properties. For the light-sensitive TtCarH, absorbance as well as interference AUC data yielded comparable results. Sedimentation coefficients and whole-body hydrodynamic analysis from SV experiments indicate that in solution apo-TtCarH and light-exposed AdoB12–TtCarH are predominantly aspherical, ellipsoidal monomers, in accord with SE data. By comparison, AdoB12–TtCarH exists as a more compact tetramer in the dark, with smaller forms such as dimers or monomers remaining undetected and low levels of larger oligomers appearing at higher protein concentrations. AUC analyses indicate that in the dark AdoB12–TtCarH associates as a tetramer with DNA but forms smaller complexes in the apo form or if exposed to light. The self-association and DNA-binding properties of TtCarH deduced from AUC are consistent with data from size-exclusion and DNA-binding gel-shift assays. AUC analyses together with hydrodynamic modeling provide insights into the AdoB12- and light-dependent self-association and DNA-binding of TtCarH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ang S, Kogulanathan J, Morris GA, Kok MS, Shewry PR, Tatham AS, Adams GG, Rowe AJ, Harding SE (2010) Structure and heterogeneity of gliadin: a hydrodynamic evaluation. Eur Biophys J 39:255–261

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Ragsdale SW (2003) The many faces of vitamin B12: catalysis by cobalamin-dependent enzymes. Annu Rev Biochem 72:209–247

    Article  PubMed  CAS  Google Scholar 

  • Bastos M, Castro V, Mrevlishvili G, Teixeira J (2004) Hydration of ds-DNA and ss-DNA by neutron quasielastic scattering. Biophys J 86:3822–3827

    Article  PubMed  CAS  Google Scholar 

  • Cervantes M, Murillo FJ (2002) Role for vitamin B12 in light induction of gene expression in the bacterium Myxococcus xanthus. J Bacteriol 184:2215–2224

    Article  PubMed  CAS  Google Scholar 

  • Cohen G, Eisenberg H (1968) Deoxyribonucleate solutions: sedimentation in a density gradient, partial specific volumes, density and refractive index increments, and preferential interactions. Biopolymers 6:1077–1100

    Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93

    Article  PubMed  CAS  Google Scholar 

  • Drennan CL, Huang S, Drummond JT, Matthews RG, Ludwig ML (1994) How a protein binds B12: a 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–1674

    Article  PubMed  CAS  Google Scholar 

  • Garcia de la Torre J, Carrasco B (2002) Hydrodynamic properties of rigid macromolecules composed of ellipsoidal and cylindrical subunits. Biopolymers 63:163–167

    Article  PubMed  CAS  Google Scholar 

  • Garcia de la Torre J, Harding SE (2013) Hydrodynamic modelling of protein conformation in solution. Biophys Rev (to be published)

  • Harding SE (1995) On the hydrodynamic analysis of macromolecular conformation. Biophys Chem 55:69–93

    Article  PubMed  CAS  Google Scholar 

  • Johnson JE Jr, Reyes FE, Polaski JT, Batey RT (2012) B12 cofactors directly stabilize an mRNA regulatory switch. Nature 492:133–137

    Article  PubMed  CAS  Google Scholar 

  • Jurk M, Dorn M, Kikhney A, Svergun D, Gartner W, Schmieder P (2010) The switch that does not flip: the blue-light receptor YtvA from Bacillus subtilis adopts an elongated dimer conformation independent of the activation state as revealed by a combined AUC and SAXS study. J Mol Biol 403:78–87

    Article  PubMed  CAS  Google Scholar 

  • Laue TM, Shah BD, Ridgeway TM, Pelletier SL (1992) Computer-aided interpretation of analytical sedimentation data for proteins. In: Harding SE, Rowe AJ, Horton JC (eds) Analytical ultracentrifugation in biochemistry and polymer science. Royal Society of Chemistry, Cambridge, UK, pp 90–125

    Google Scholar 

  • Lebowitz J, Lewis MS, Schuck P (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci 11:2067–2079

    Article  PubMed  CAS  Google Scholar 

  • León E, Navarro-Avilés G, Santiveri CM, Flores-Flores C, Rico M, González C, Murillo FJ, Elías-Arnanz M, Jiménez MA, Padmanabhan S (2010) A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Res 38:5226–5241

    Article  PubMed  Google Scholar 

  • Lopez Martinez MC, Garcia de la Torre J (1983) Transport properties of rigid, symmetrical oligomeric structures composed of prolate, ellipsoidal subunits. Biophys Chem 18:269–279

    Article  PubMed  CAS  Google Scholar 

  • Ludwig ML, Matthews RG (1997) Structure-based perspectives on B12-dependent enzymes. Annu Rev Biochem 66:269–313

    Article  PubMed  CAS  Google Scholar 

  • Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Avilés G, Jiménez MA, Pérez-Marín MC, González C, Rico M, Murillo FJ, Elías-Arnanz M, Padmanabhan S (2007) Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol Microbiol 63:980–994

    Article  PubMed  Google Scholar 

  • Ortega A, Garcia de la Torre J (2003) Hydrodynamic properties of rodlike and disklike particles in dilute solution. J Chem Phys 114:9914–9919

    Article  Google Scholar 

  • Ortega A, Amoros D, Garcia de la Torre J (2011) Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models. Biophys J 101:892–898

    Article  PubMed  CAS  Google Scholar 

  • Ortiz-Guerrero JM, Polanco MC, Murillo FJ, Padmanabhan S, Elias-Arnanz M (2011) Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc Natl Acad Sci U S A 108:7565–7570

    Article  PubMed  CAS  Google Scholar 

  • Pérez-Marín MC, Padmanabhan S, Polanco MC, Murillo FJ, Elías-Arnanz M (2008) Vitamin B12 partners the CarH repressor to downregulate a photoinducible promoter in Myxococcus xanthus. Mol Microbiol 67:804–819

    Article  PubMed  Google Scholar 

  • Peselis A, Serganov A (2012) Structural insights into ligand binding and gene expression control by an adenosylcobalamin riboswitch. Nat Struct Mol Biol 19:1182–1184

    Article  PubMed  CAS  Google Scholar 

  • Roth JR, Lawrence JG, Bobik TA (1996) Cobalamin (coenzyme B12): synthesis and biological significance. Annu Rev Microbiol 50:137–181

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2000) Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling. Biophys J 78:1606–1619

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2010a) Sedimentation patterns of rapidly reversible protein interactions. Biophys J 98:2005–2013

    Article  PubMed  CAS  Google Scholar 

  • Schuck P (2010b) Diffusion of the reaction boundary of rapidly interacting macromolecules in sedimentation velocity. Biophys J 98:2741–2751

    Article  PubMed  CAS  Google Scholar 

  • Schwartz PA, Frey PA (2007) 5′-Peroxyadenosine and 5′-peroxyadenosylcobalamin as intermediates in the aerobic photolysis of adenosylcobalamin. Biochemistry 46:7284–7292

    Article  PubMed  CAS  Google Scholar 

  • Taga ME, Larsen NA, Howard-Jones AR, Walsh CT, Walker GC (2007) BluB cannibalizes flavin to form the lower ligand of vitamin B12. Nature 446:449–453

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Kondo M, Usui N, Usui T, Ohzeki H, Yamazaki R, Washioka M, Nakamura A, Hoshino T, Hakamata W et al (2011) Involvement of CarA/LitR and CRP/FNR family transcriptional regulators in light-induced carotenoid production in Thermus thermophilus. J Bacteriol 193:2451–2459

    Article  PubMed  CAS  Google Scholar 

  • Vistica J, Dam J, Balbo A, Yikilmaz E, Mariuzza RA, Rouault TA, Schuck P (2004) Sedimentation equilibrium analysis of protein interactions with global implicit mass conservation constraints and systematic noise decomposition. Anal Biochem 326:234–256

    Article  PubMed  CAS  Google Scholar 

  • Warren MJ, Raux E, Schubert HL, Escalante-Semerena JC (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19:390–412

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Balbo A, Brown PH, Schuck P (2011) The boundary structure in the analysis of reversibly interacting systems by sedimentation velocity. Methods 54:16–30

    Article  PubMed  CAS  Google Scholar 

  • Zoltowski BD, Crane BR (2008) Light activation of the LOV protein vivid generates a rapidly exchanging dimer. Biochemistry 47:7012–7019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank (from Universidad de Murcia) Dr. Alejandro Torrecillas for mass spectrometry analysis and J.A. Madrid for technical assistance. This work was funded by the Ministerio de Ciencia e Innovación (MICINN)-Spain and Ministerio de Economía y Competitividad (MINECO)-Spain grants to S.P. (BFU2009-12445-C02-02; BFU2012-40184-C02-02), to J.G.T. (CTQ-2009-08030; CTQ-2012-33717), and to M.E.-A. (BFU2009-12445-C02-01; BFU2012-40184-C02-01), the grants to J.G.T. and M.E.-A. co-financed by the European Union (FEDER). J.G.T also received funding from a Grupo de Excelencia de la Región de Murcia grant 04531/GERM/06. A.I.D. is the recipient of a FPI-MICINN grant. A.O. was supported by a postdoctoral fellowship from Fundación CajaMurcia, and J.M.O.-G. by a Consejo Superior de Investigaciones Científicas (Spain) JAE-Predoc fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Padmanabhan or José García de la Torre.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díez, A.I., Ortiz-Guerrero, J.M., Ortega, A. et al. Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator. Eur Biophys J 42, 463–476 (2013). https://doi.org/10.1007/s00249-013-0897-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-013-0897-x

Keywords

Navigation