Skip to main content
Log in

Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate “a posteriori” the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder–order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical–thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahmed LS, Xia J, Dubin PL, Kokufuta E (1994) Stoichiometry and the mechanism of complex formation in protein-polyelectrolyte coacervation. J Macromol Sci, Part A 31:17–29

    Google Scholar 

  • Aspinall GO (1983) Classification of polysaccharides. In: Aspinall GO (ed) The polysaccharides, vol 2. Academic Press, New York

    Google Scholar 

  • Banks W, Greenwood CT (1975) Starch and its components. University Press, Edinburgh

    Google Scholar 

  • Bawarski WE, Chidlowsky E, Bharali DJ, Mousa SA (2008) Emerging nanopharmaceuticals. Nanomed Nanotechnol Biol Med 4:273–282

    Article  CAS  Google Scholar 

  • Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52

    Article  PubMed  CAS  Google Scholar 

  • Bizot H, Le Bail P, Leroux B, Davy J, Roger P, Buleon A (1997) Calorimetric evaluation of the glass transition in hydrated, linear and branched polyanhydroglucose compounds. Carbohydr Polym 32:33–50

    Article  CAS  Google Scholar 

  • Bohidar HB (2008) Coacervates: a novel state of soft matter: an overview. J Surf Sci Technol 24:105–124

    CAS  Google Scholar 

  • Borgogna M, Bellich B, Zorzin L, Lapasin R, Cesàro A (2010) Food microencapsulation of bioactive compounds: rheological and thermal characterisation of non-conventional gelling system. Food Chem 122:416–423

    Article  CAS  Google Scholar 

  • Brady JW, Mason PE, Tavagnacco L, Schnupf U, Saboungi M-L, Price D, Cesàro A (2010) Weakly-hydrated surfaces and the binding interactions of small biological solutes. Eur Biophys J (submitted in this issue)

  • Brant DA (1976) Conformational theory applied to polysaccharide structure. Q Rev Biophys 9:527–596

    Article  PubMed  CAS  Google Scholar 

  • Brant DA (1982) Molecular modeling of the solution behavior of cellulosic chains. Carbohydr Polym 2:232–237

    Article  CAS  Google Scholar 

  • Brant DA (1999) Novel approaches to the analysis of polysaccharide structures. Curr Opin Struct Biol 9:556–562

    Article  PubMed  CAS  Google Scholar 

  • Brant DA, Christ MD (1990) Realistic conformational modeling of carbohydrates. In: French AD, Brady JW (eds) Computer modeling of carbohydrate molecules. American Chemical Society, Washington, DC, pp 42–68

    Chapter  Google Scholar 

  • Brun F, Accardo A, Marchini M, Ortolani F, Turco G, Paoletti S (2011) Texture analysis of TEM micrographs of alginate gels for cell microencapsulation. Microsc Res Tech 74:58–66

    Article  PubMed  Google Scholar 

  • Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Merten O-W (2011) Cell micro carriers and microcapsules of stimuli-responsive polymers. J Contr Rel 149:209–224

    Article  CAS  Google Scholar 

  • Burton BA, Brant DA (1983) Comparative flexibility, extension, and conformation of some simple polysaccharide chains. Biopolymers 22:1769–1792

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  • Calvert P (1997) Biopolymers: the structure of starch. Nature 389:338–339

    Article  CAS  Google Scholar 

  • Calvo P, Remunan-Lòpez C, Vila-Jato JL, Alonso MJ (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14:1431–1436

    Article  PubMed  CAS  Google Scholar 

  • Cesàro A (1986) Thermodynamics of carbohydrate monomers and polymers in aqueous solution. In: Hinz HJ (ed) Thermodynamic data for biochemistry and biotechnology. Springer, Heidelberg, pp 1–226

    Google Scholar 

  • Cesàro A (2009) Contribution to specific challenges in nanomaterials technologies. In: Dosch H, Van de Voorde MH (eds) GENNESYS white paper: a new European partnership between nanomaterials science and nanotechnology and synchrotron radiation and neutron facilities. Max-Planck-Institut für Metallforschung, Stuttgart, pp 139–162

    Google Scholar 

  • Cesàro A, Paoletti S, Urbani R, Benegas JC (1989) Polyelectrolytic effects in semi-flexible carboxylate polysaccharides. Part 2. Int J Biol Macromol 11:66–72

    Article  PubMed  Google Scholar 

  • Cesàro A, Paoletti S, Guidugli S, Benegas JC (1991) Polyelectrolytic aspects of the titration curve pH-induced conformational transition of poly(-glutamic acid): the semi-flexible model. Biophys Chem 39:9–16

    Article  PubMed  Google Scholar 

  • Cesàro A, Sussich F, Navarini L (2004) Order-disorder conformational transitions of carbohydrate polymers. In: Lörinczy D (ed) The nature of biological systems as revealed by thermal methods. Kluwer, Dordrecht, pp 1–30

    Google Scholar 

  • Cooper CL, Dubin PL, Kayitmazer AB, Turksen S (2005) Polyelectrolyte-protein complexes. Curr Opin Colloid Interface Sci 10:52–78

    Article  CAS  Google Scholar 

  • Dais P (1995) Carbon-13 nuclear magnetic relaxation and motional behavior of carbohydrate molecules in solution. Adv Carbohydr Chem Biochem 51:63–131

    Article  PubMed  CAS  Google Scholar 

  • De Giacomo O, Cesàro A, Quaroni L (2008) Synchrotron based FTIR spectromicroscopy of biopolymer blends undergoing phase separation. Food Biophys 3:77–86

    Article  Google Scholar 

  • Duceppe N, Tabrizian M (2009) Factors influencing the transfection efficiency of ultra low molecular weight chitosan/hyaluronic acid nanoparticles. Biomaterials 30:2625–2631

    Article  PubMed  CAS  Google Scholar 

  • Duus JØ, Gotfredsen CH, Bock K (2000) Carbohydrate structural determination by NMR spectroscopy: modern methods and limitations. Chem Rev 100:4589–4614

    Article  PubMed  CAS  Google Scholar 

  • Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem Rev 96:683–720

    Article  PubMed  CAS  Google Scholar 

  • Faroongsarng D, Sukonrat P (2008) Thermal behavior of water in the selected starch- and cellulose-based polymeric hydrogels. Int J Pharm 352:152–158

    Article  PubMed  CAS  Google Scholar 

  • Furlan S, La Penna G, Perico A, Cesàro A (2004) Conformational dynamics of hyaluronan oligomers in solution. 3. Molecular dynamics from Monte Carlo replica-exchange simulations and mode-coupling diffusion theory. Macromolecules 37:6197–6209

    Article  CAS  Google Scholar 

  • Furlan S, La Penna G, Perico A, Cesàro A (2005) Hyaluronan chain conformation and dynamics. Carbohydr Res 340:959–970

    Article  PubMed  CAS  Google Scholar 

  • Gerard C, Catuogno C, Amargier-Huin C, Grossin L, Hubert P, Gillet P, Netter P, Dellacherie E, Payan E (2005) The effect of alginate, hyaluronate and hyaluronate derivatives biomaterials on synthesis of non-articular chondrocyte extracellular matrix. J Mater Sci: Mater Med 16:541–551

    Article  CAS  Google Scholar 

  • Goddard ED, Gruber JV (1999) Principles of polymer science and technology in cosmetics and personal care, vol 22. Marcel Dekker, New York

    Book  Google Scholar 

  • Goebel K, Brant D (1970) The configuration of amylose and its derivatives in aqueous solution. Exp Results Macromol 3:634–643

    Article  Google Scholar 

  • Gombotz WR, Wee S (1998) Protein release from alginate matrices. Adv Drug Deliv Rev 31:267–285

    Article  PubMed  CAS  Google Scholar 

  • Goycoolea FM, Lollo G, Remunan-Lopez C, Quaglia F, Alonso MJ (2009) Chitosan-alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecules. Biomacromolecules 10:1736–1743

    Article  PubMed  CAS  Google Scholar 

  • Hoogendam CW, de Keizer A, Cohen Stuart MA, Bijsterbosch BH, Smit JAM, van Dijk JAPP, van der Horst PM, Batelaan JG (1998) Persistence length of carboxymethyl cellulose as evaluated from size exclusion chromatography and potentiometric titrations. Macromolecules 31:6297–6309

    Article  CAS  Google Scholar 

  • Jordan RC, Brant DA, Cesàro A (1978) A Monte Carlo study of the amylosic chain conformation. Biopolymers 17:2617–2632

    Article  CAS  Google Scholar 

  • Kajiwara K, Miyamoto T (1998) Progress in structural characterization of functional polysaccharide. In: Dimitriu S (ed) Polysaccharides: structural diversity and functional versatility. Marcel Dekker, New York, pp 1–55

    Google Scholar 

  • Koningsveld R, Stockmayer WH, Nies E (2001) Polymer phase diagrams: a textbook. Oxford University Press, Oxford

    Google Scholar 

  • Kwon HJ, Gong JP (2006) Negatively charged polyelectrolyte gels as bio-tissue model system and for biomedical application. Curr Opin Colloid Interface Sci 11:345–350

    Article  CAS  Google Scholar 

  • Lapasin R, Pricl S (1995) Rheology of industrial polysaccharides. Chapman and Hall, London, pp 250–494

    Book  Google Scholar 

  • Lee DW, Hwang SJ, Park JB, Park HJ (2003) Preparation and release characteristics of polymer-coated and blended alginate microspheres. J Microencapsul 20:179–192

    PubMed  CAS  Google Scholar 

  • Leisner D, Imae T (2003) Polyelectrolyte behaviour of an interpolyelectrolyte complex formed in aqueous solution of a charged dendrimer and sodium poly(l-glutamate). J Phys Chem B 107:13158–13167

    Article  CAS  Google Scholar 

  • Letardi S, La Penna G, Chiessi E, Perico A, Cesàro A (2001) Conformational dynamics of hyaluronan in solution. 2. Mode-coupling diffusion approach to oligomers. Macromolecules 35:286–300

    Article  Google Scholar 

  • Liu JH-Y, Brameld KA, Brant DA, Goddard WA (2002) Conformational analysis of aqueous pullulan oligomers: an effective computational approach. Polymer 43:509–516

    Article  CAS  Google Scholar 

  • Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60:1650–1662

    Article  PubMed  CAS  Google Scholar 

  • Manning GS (1979) Counterion binding in polyelectrolyte theory. Acc Chem Res 12:443–449

    Article  CAS  Google Scholar 

  • Marchessault RH, Deslandes Y (1981) Crystalline conformation of homo- and regular heteroglucan chains. Carbohydr Polym 1:31–38

    Article  CAS  Google Scholar 

  • Marsich E, Borgogna M, Donati I, Mozetic P, Strand BL, Salvador SG, Vittur F, Paoletti S (2008) Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res Part A 84A:364–376

    Article  CAS  Google Scholar 

  • Marszalek PE, Oberhauser AF, Pang Y-P, Fernandez JM (1998) Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396:661–664

    Article  PubMed  CAS  Google Scholar 

  • Mattice WL, Suter UW (1994) Conformational theory of large molecules. Wiley, New York

    Google Scholar 

  • Morris GA, de al Torre JG, Ortega A, Castile J, Smith A, Harding SE (2008) Molecular flexibility of citrus pectins by combined sedimentation and viscosity analysis. Food Hydrocoll 22:1435–1442

    Article  CAS  Google Scholar 

  • Norton IT, Frith WJ (2001) Microstructure design in mixed biopolymer composites. Food Hydrocoll 15:543–553

    Article  CAS  Google Scholar 

  • Perico A (1989) Segmental relaxation in macromolecules. Acc Chem Res 22:336–342

    Article  CAS  Google Scholar 

  • Perico A, Mormino M, Urbani R, Cesàro A, Tylianakis E, Dais P, Brant DA (1999) Local dynamics of carbohydrates. 1. Dynamics of simple glycans with different chain linkages. J Phys Chem B 103:8162–8171

    Article  CAS  Google Scholar 

  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    Article  Google Scholar 

  • Poland D, Scheraga HA (1970) Theory of Helix-coil transitions in biopolymers. Academic Press, New York

    Google Scholar 

  • Prego C, Paolicelli P, Díaz B, Vicente S, Sánchez A, González-Fernández Á, Alonso MJ (2010) Chitosan-based nanoparticles for improving immunization against hepatitis B infection. Vaccine 28:2607–2614

    Article  PubMed  CAS  Google Scholar 

  • Privalov PL (1980a) Heat capacity studies in biology. In: Beezer AE (ed) Biological microcalorimetry. Academic Press, London, pp 413–451

    Google Scholar 

  • Privalov PL (1980b) Scanning micro calorimeters for studying macromolecules. Pure Appl Chem 52:479–497

    Article  CAS  Google Scholar 

  • Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P (1993) Development of a new drug carrier made from alginate. J Pharm Sci 82:912–917

    Article  PubMed  CAS  Google Scholar 

  • Rampino A (2011) Ph.D. thesis. University of Trieste, Italy

  • Rao VSR, Qasba PK, Balaji PV, Chandrasekaran R (1998) Conformation of carbohydrates. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  • Rees D (1977) Polysaccharide shapes. Chapman and Hall, London

    Book  Google Scholar 

  • Rief M, Fernandez JM, Gaub HE (1998) Elastically coupled two-level systems as a model for biopolymer extensibility. Phys Rev Lett 81:4764–4767

    Google Scholar 

  • Ruggiero J, Urbani R, Cesàro A (1995) Conformational features of galacturonans. II. Configurational statistics of pectic polymers. Int J Biol Macromol 17:205–218

    Article  PubMed  CAS  Google Scholar 

  • Scandola M, Ceccorulli G, Pizzoli M (1991) Molecular motions of polysaccharides in the solid state: dextran, pullulan and amylose. Int J Biol Macromol 13:254–260

    PubMed  CAS  Google Scholar 

  • Smidsrød O, Skjåk-Bræk G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  PubMed  Google Scholar 

  • Sperling LH (1997) Polymeric multicomponent materials. Wiley, New York

    Google Scholar 

  • Straub PR, Brant DA (1980) Measurement of preferential solvation of some glucans in mixed solvent systems by gel-permeation chromatography. Biopolymers 19:639–653

    Article  CAS  Google Scholar 

  • Suggett A (1975) Polysaccharides. In: Franks F (ed) Water: a comprehensive treatise, vol 4. Plenum Press, New York, pp 519–567

    Google Scholar 

  • Talon C, Smith LJ, Brady JW, Lewis BA, Copley JRD, Price DL, Saboungi M-L (2004) Dynamics of water molecules in glucose solutions. J Phys Chem B 108:5120–5126

    Article  CAS  Google Scholar 

  • te Nijenhuis K (1997) Thermoreversible networks. Advances in polymer sciences, vol 130. Springer, Berlin

    Google Scholar 

  • Thies C (2005) A survey of microencapsulation processes. In: Benita S (ed) Microencapsulation. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Tugarinov V, Liang Z, Shapiro YE, Freed JH, Meirovitch E (2001) A structural mode-coupling approach to 15N NMR relaxation in proteins. J Am Chem Soc 123:3055–3063

    Article  PubMed  CAS  Google Scholar 

  • Veis A (1970) Phase equilibria in systems of interacting polyelectrolytes. In: Veis A (ed) Biological polyelectrolytes. Biological macromolecule series, vol 3. Marcel Dekker, New York, pp 211–273

    Google Scholar 

  • Waigh TA, Hopkinson I, Donald AM, Butler MF, Heidelbach F, Riekel C (1997) Analysis of the native structure of starch granules with X-ray microfocus diffraction. Macromolecules 30:3813–3820

    Article  CAS  Google Scholar 

  • Wang Y, Kimura K, Huang Q, Dubin PL, Jaeger W (1999) Effects of salt on polyelectrolyte-micelle coacervation. Macromolecules 32:7128–7134

    Article  CAS  Google Scholar 

  • Wang Y, Kimura K, Dubin PL, Jaeger W (2000) Polyelectrolyte-micelle coacervation: effects of micelle surface charge density, polymer molecular weight, and polymer/surfactant ratio. Macromolecules 33:3324–3331

    Article  CAS  Google Scholar 

  • Yalpani M (1988) Polysaccharides: syntheses, modifications and structure/property relations, vol 36. Elsevier, Amsterdam

    Google Scholar 

  • Zintchenko A, Rother G, Dautzenberg H (2003) Transition highly aggregated complexes: soluble complexes via polyelectrolyte exchange reactions: kinetics, structural changes, and mechanism. Langmuir 19:2507–2513

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge contributions by several former co-workers to the results summarized here; the original papers are cited. Original TEM picture in Fig. 1 has been kindly provided by A. Marchini and F. Ortolani, that in Fig. 9 by P. Blasi and A. Rampino. The recent work has been carried out in the framework of NanoBioPharmaceutics (FP6 EU Project no. 026723-2) with support from the University of Trieste. MB is the recipient of a grant from MIUR (Rome).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Attilio Cesàro.

Additional information

Special Issue: Biophysics of cosmetics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesàro, A., Bellich, B. & Borgogna, M. Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles. Eur Biophys J 41, 379–395 (2012). https://doi.org/10.1007/s00249-011-0753-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-011-0753-9

Keywords

Navigation