Skip to main content
Log in

Biophysical characterization of Entamoeba histolytica phosphoserine aminotransferase (EhPSAT): role of cofactor and domains in stability and subunit assembly

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We investigated the role of the cofactor PLP and its binding domain in stability and subunit assembly of phosphoserine aminotransferase (EhPSAT) from an enteric human parasite Entamoeba histolytica. Presence of cofactor influences the tertiary structure of EhPSAT because of the significant differences in the tryptophan microenvironment and proteolytic pattern of holo- and apo-enzyme. However, the cofactor does not influence the secondary structure of the enzyme. Stability of the protein is significantly affected by the cofactor as holo-enzyme shows higher T m and C m values for thermal and GdnHCl-induced denaturation, respectively, when compared to the apo-enzyme. The cofactor also influences the unfolding pathway of the enzyme. Although urea-dependent unfolding of both holo- and apo-EhPSAT is a three-state process, the intermediates stabilized during unfolding are significantly different. For holo-EhPSAT a dimeric holo-intermediate was stabilized, whereas for apo-EhPSAT, a monomeric intermediate was stabilized. This is the first report on stabilization of a holo-dimeric intermediate for any aminotransferase. The isolated PLP-binding domain is stabilized as a monomer, thus suggesting that either the N-terminal tail or the C-terminal domain of EhPSAT is required for stabilization of dimeric configuration of the wild-type enzyme. To the best of our knowledge, this is a first report investigating the role of PLP and various protein domains in structural and functional organization of a member of subgroup IV of the aminotransferases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PSAT:

Phosphoserine aminotransferase

PLP:

Pyridoxal-5′-phosphate

Ni-NTA:

Nickel nitrilotriacetic acid

SEC:

Size exclusion chromatography

References

  • Akhtar MS, Ahmad A, Bhakuni V (2002) Guanidinium chloride- and urea-induced unfolding of the dimeric enzyme glucose oxidase. Biochemistry 41:3819–3827

    Article  PubMed  CAS  Google Scholar 

  • Ali V, Nozaki T (2006) Biochemical and functional characterization of phosphoserine aminotransferase from Entamoeba histolytica, which possesses both phosphorylated and non-phosphorylated serine metabolic pathways. Mol Biochem Parasitol 145:71–83

    Article  PubMed  CAS  Google Scholar 

  • Andrade MA, Chacon P, Merelo JJ, Moran F (1993) Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 6:383–390

    Article  PubMed  CAS  Google Scholar 

  • Bollen YJ, Nabuurs SM, van Berkel WJ, van Mierlo CP (2005) Last in, first out: the role of cofactor binding in flavodoxin folding. J Biol Chem 280:7836–7844

    Article  PubMed  CAS  Google Scholar 

  • Cai K, Schirch D, Schirch V (1995) The affinity of pyridoxal 5′-phosphate for folding intermediates of Escherichia coli serine hydroxymethyltransferase. J Biol Chem 270:19294–19299

    Article  PubMed  CAS  Google Scholar 

  • Choi YS, Han SK, Kim J, Yang JS, Jeon J, Ryu SH, Kim S (2010) ConPlex: a server for the evolutionary conservation analysis of protein complex structures. Nucleic Acids Res 38:W450–W456

    Google Scholar 

  • Deu E, Kirsch JF (2007a) Cofactor-directed reversible denaturation pathways: the cofactor-stabilized Escherichia coli aspartate aminotransferase homodimer unfolds through a pathway that differs from that of the apoenzyme. Biochemistry 46:5819–5829

    Article  PubMed  CAS  Google Scholar 

  • Deu E, Kirsch JF (2007b) The unfolding pathway for Apo Escherichia coli aspartate aminotransferase is dependent on the choice of denaturant. Biochemistry 46:5810–5818

    Article  PubMed  CAS  Google Scholar 

  • Deu E, Dhoot J, Kirsch JF (2009) The partially folded homodimeric intermediate of Escherichia coli aspartate aminotransferase contains a “molten interface” structure. Biochemistry 48:433–441

    Article  PubMed  CAS  Google Scholar 

  • Greene RF Jr, Pace CN (1974) Urea and guanidine hydrochloride denaturation of ribonuclease, lysozyme, alpha-chymotrypsin, and beta-lactoglobulin. J Biol Chem 249:5388–5393

    PubMed  CAS  Google Scholar 

  • Herold M, Leistler B, Hage A, Luger K, Kirschner K (1991) Autonomous folding and coenzyme binding of the excised pyridoxal 5′-phosphate binding domain of aspartate aminotransferase from Escherichia coli. Biochemistry 30:3612–3620

    Article  PubMed  CAS  Google Scholar 

  • Hester G, Stark W, Moser M, Kallen J, Markovic-Housley Z, Jansonius JN (1999) Crystal structure of phosphoserine aminotransferase from Escherichia coli at 2.3 A resolution: comparison of the unligated enzyme and a complex with alpha-methyl-l-glutamate. J Mol Biol 286:829–850

    Article  PubMed  CAS  Google Scholar 

  • Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8:759–769

    Article  PubMed  CAS  Google Scholar 

  • Kapetaniou EG, Thanassoulas A, Dubnovitsky AP, Nounesis G, Papageorgiou AC (2006) Effect of pH on the structure and stability of Bacillus circulans ssp. alkalophilus phosphoserine aminotransferase: thermodynamic and crystallographic studies. Proteins 63:742–753

    Article  PubMed  CAS  Google Scholar 

  • Knapp JA, Pace CN (1974) Guanidine hydrochloride and acid denaturation of horse, cow, and Candida krusei cytochromes c. Biochemistry 13:1289–1294

    Article  PubMed  CAS  Google Scholar 

  • Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  • Makhatadze GI, Privalov PL (1992) Protein interactions with urea and guanidinium chloride. A calorimetric study. J Mol Biol 226:491–505

    Article  PubMed  CAS  Google Scholar 

  • Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561

    Article  PubMed  CAS  Google Scholar 

  • Mishra V, Ali V, Nozaki T, Bhakuni V (2010) Entamoeba histolytica Phosphoserine aminotransferase (EhPSAT): insights into the structure-function relationship. BMC Res Notes 3:52

    Article  PubMed  Google Scholar 

  • Muralidhara BK, Wittung-Stafshede P (2005) FMN binding and unfolding of Desulfovibrio desulfuricans flavodoxin: “hidden” intermediates at low denaturant concentrations. Biochim Biophys Acta 1747:239–250

    PubMed  CAS  Google Scholar 

  • Nandi PK, Robinson DR (1984) Effects of urea and guanidine hydrochloride on peptide and nonpolar groups. Biochemistry 23:6661–6668

    Article  PubMed  CAS  Google Scholar 

  • Pant K, Crane BR (2005) Structure of a loose dimer: an intermediate in nitric oxide synthase assembly. J Mol Biol 352:932–940

    Article  PubMed  CAS  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  PubMed  CAS  Google Scholar 

  • Satterthwait AC, Jencks WP (1974) The mechanism of the aminolysis of acetate esters. J Am Chem Soc 96:7018–7031

    Article  PubMed  CAS  Google Scholar 

  • Schellman JA (2002) Fifty years of solvent denaturation. Biophys Chem 96:91–101

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Kack H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8:R1–R6

    Article  PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Singh K, Bhakuni V (2008) Toxoplasma gondii ferredoxin-NADP + reductase: role of ionic interactions in stabilization of native conformation and structural cooperativity. Proteins 71:1879–1888

    Article  PubMed  CAS  Google Scholar 

  • Wardell SE, Kwok SC, Sherman L, Hodges RS, Edwards DP (2005) Regulation of the amino-terminal transcription activation domain of progesterone receptor by a cofactor-induced protein folding mechanism. Mol Cell Biol 25:8792–8808

    Article  PubMed  CAS  Google Scholar 

  • West SM, Price NC (1989) The unfolding and refolding of cytoplasmic aspartate aminotransferase from pig heart. Biochem J 261:189–196

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

V.M. is grateful to the Council of Scientific and Industrial Research, Government of India, for the award of a research fellowship. Finally, we are thankful to Dr. Sohail Akhtar, Dr. Prabodh Kapoor and P. Shah for useful suggestions and for generating structural figures. This is communication no. 7996 from CDRI, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod Bhakuni.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 233 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, V., Ali, V., Nozaki, T. et al. Biophysical characterization of Entamoeba histolytica phosphoserine aminotransferase (EhPSAT): role of cofactor and domains in stability and subunit assembly. Eur Biophys J 40, 599–610 (2011). https://doi.org/10.1007/s00249-010-0654-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0654-3

Keywords

Navigation