Skip to main content

Advertisement

Log in

How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis

  • Biophysics Letter
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Better treatment of protein flexibility is essential in structure-based drug design projects such as virtual screening and protein-ligand docking. Diversity in ligand-binding mechanisms and receptor conformational changes makes it difficult to treat dynamic features of the receptor during the docking simulation. Thus, the use of pregenerated multiple receptor conformations is applied today in virtual screening studies. However, generation of a small relevant set of receptor conformations remains challenging. To address this problem, we propose a new protocol for the generation of multiple receptor conformations via normal mode analysis and for the selection of several receptor conformations suitable for docking/virtual screening. We validated this protocol on cyclin-dependent kinase 2, which possesses a binding site located at the interface between two subdomains and is known to undergo significant conformational changes in the active site region upon ligand binding. We believe that the suggested rules for the choice of suitable receptor conformations can be applied to other targets when dealing with in silico screening on flexible receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alexandrov V, Lehnert U, Echols N, Milburn D, Engelman D, Gerstein M (2005) Normal modes for predicting protein motions: a comprehensive database assessment and associated web tool. Protein Sci 14:633–643

    Article  CAS  PubMed  Google Scholar 

  • Amaro RE, Minh DD, Cheng LS, Lindstrom WM Jr, Olson AJ, Lin JH, Li WW, McCammon JA (2007) Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J Am Chem Soc 129:7764–7765

    Article  CAS  PubMed  Google Scholar 

  • Amaro RE, Baron R, McCammon JA (2008) An improved relaxed complex scheme for receptor flexibility in computer-aided drug design. J Comput Aided Mol Des 22:693–705

    Article  CAS  PubMed  Google Scholar 

  • Barril X, Morley SD (2005) Unveiling the full potential of flexible receptor docking using multiple crystallographic structures. J Med Chem 48:4432–4443

    Article  CAS  PubMed  Google Scholar 

  • Bisson WH, Cheltsov AV, Bruey-Sedano N, Lin B, Chen J, Goldberger N, May LT, Christopoulos A, Dalton JT, Sexton PM, Zhang XK, Abagyan R (2007) Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc Natl Acad Sci USA 104:11927–11932

    Article  CAS  PubMed  Google Scholar 

  • Bolstad ES, Anderson AC (2008) In pursuit of virtual lead optimization: the role of the receptor structure and ensembles in accurate docking. Proteins 73:566–580

    Article  CAS  PubMed  Google Scholar 

  • Bolstad ES, Anderson AC (2009) In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking. Proteins 75:62–74

    Article  CAS  PubMed  Google Scholar 

  • Bowman AL, Lerner MG, Carlson HA (2007a) Protein flexibility and species specificity in structure-based drug discovery: dihydrofolate reductase as a test system. J Am Chem Soc 129:3634–3640

    Article  CAS  PubMed  Google Scholar 

  • Bowman AL, Nikolovska-Coleska Z, Zhong H, Wang S, Carlson HA (2007b) Small molecule inhibitors of the MDM2–p53 interaction discovered by ensemble-based receptor models. J Am Chem Soc 129:12809–12814

    Article  CAS  PubMed  Google Scholar 

  • Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401

    Article  CAS  PubMed  Google Scholar 

  • B-Rao C, Subramanian J, Sharma SD (2009) Managing protein flexibility in docking and its applications. Drug Discov Today 14:394–400

    Article  CAS  PubMed  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Cavasotto CN, Abagyan RA (2004) Protein flexibility in ligand docking and virtual screening to protein kinases. J Mol Biol 337:209–225

    Article  CAS  PubMed  Google Scholar 

  • Cavasotto CN, Kovacs JA, Abagyan RA (2005a) Representing receptor flexibility in ligand docking through relevant normal modes. J Am Chem Soc 127:9632–9640

    Article  CAS  PubMed  Google Scholar 

  • Cavasotto CN, Orry AJ, Abagyan R (2005b) The challenge of considering receptor flexibility in ligand docking and virtual screening. Curr Comput Aided Drug Design 1:423–440

    Article  CAS  Google Scholar 

  • ChemBridge Corporation. (http://chembridge.com/chembridge)

  • Cheng LS, Amaro RE, Xu D, Li WW, Arzberger PW, McCammon JA (2008) Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J Med Chem 51:3878–3894

    Article  CAS  PubMed  Google Scholar 

  • Cozzini P, Kellogg GE, Spyrakis F, Abraham DJ, Costantino G, Emerson A, Fanelli F, Gohlke H, Kuhn LA, Morris GM, Orozco M, Pertinhez TA, Rizzi M, Sotriffer CA (2008) Target flexibility: an emerging consideration in drug discovery and design. J Med Chem 51:6237–6255

    Article  CAS  PubMed  Google Scholar 

  • Cui Q, Li G, Ma J, Karplus M (2004) A normal mode analysis of structural plasticity in the biomolecular motor F(1)-ATPase. J Mol Biol 340:345–372

    Article  CAS  PubMed  Google Scholar 

  • Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME (2001) Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure 9:389–397

    Article  CAS  PubMed  Google Scholar 

  • Ferrari AM, Wei BQ, Costantino L, Shoichet BK (2004) Soft docking and multiple receptor conformations in virtual screening. J Med Chem 47:5076–5084

    Article  CAS  PubMed  Google Scholar 

  • Floquet N, Marechal JD, Badet-Denisot MA, Robert CH, Dauchez M, Perahia D (2006) Normal mode analysis as a prerequisite for drug design: application to matrix metalloproteinases inhibitors. FEBS Lett 580:5130–5136

    Article  CAS  PubMed  Google Scholar 

  • Frembgen-Kesner T, Elcock AH (2006) Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. J Mol Biol 359:202–214

    Article  CAS  PubMed  Google Scholar 

  • Frimurer TM, Peters GH, Iversen LF, Andersen HS, Moller NP, Olsen OH (2003) Ligand-induced conformational changes: improved predictions of ligand binding conformations and affinities. Biophys J 84:2273–2281

    Article  CAS  PubMed  Google Scholar 

  • Grant BJ, Gorfe AA, McCammon JA (2010) Large conformational changes in proteins: signaling and other functions. Curr Opin Struct Biol ( in press)

  • Hardcastle IR, Arris CE, Bentley J, Boyle FT, Chen Y, Curtin NJ, Endicott JA, Gibson AE, Golding BT, Griffin RJ, Jewsbury P, Menyerol J, Mesguiche V, Newell DR, Noble ME, Pratt DJ, Wang LZ, Whitfield HJ (2004) N2-substituted O6-cyclohexylmethylguanine derivatives: potent inhibitors of cyclin-dependent kinases 1 and 2. J Med Chem 47:3710–3722

    Article  CAS  PubMed  Google Scholar 

  • Hornak V, Simmerling C (2007) Targeting structural flexibility in HIV-1 protease inhibitor binding. Drug Discov Today 12:132–138

    Article  CAS  PubMed  Google Scholar 

  • Huang SY, Zou X (2007) Ensemble docking of multiple protein structures: considering protein structural variations in molecular docking. Proteins 66:399–421

    Article  CAS  PubMed  Google Scholar 

  • Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49:6789–6801

    Article  CAS  PubMed  Google Scholar 

  • Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des 21:281–306

    Article  CAS  PubMed  Google Scholar 

  • Kairys V, Gilson MK (2002) Enhanced docking with the mining minima optimizer: acceleration and side-chain flexibility. J Comput Chem 23:1656–1670

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Ma J, Karplus M, Lipscomb WN (2006) The allosteric mechanism of yeast chorismate mutase: a dynamic analysis. J Mol Biol 356:237–247

    Article  CAS  PubMed  Google Scholar 

  • Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule-ligand interactions. J Mol Biol 161:269–288

    Article  CAS  PubMed  Google Scholar 

  • Lagorce D, Sperandio O, Galons H, Miteva MA, Villoutreix BO (2008) FAF-Drugs2: free ADME/tox filtering tool to assist drug discovery and chemical biology projects. BMC Bioinf 9:396

    Article  Google Scholar 

  • Lagorce D, Pencheva T, Villoutreix BO, Miteva MA (2009) DG-AMMOS: a new tool to generate 3D conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening. BMC Chem Biol 9:6

    Article  PubMed  Google Scholar 

  • Ma B, Shatsky M, Wolfson HJ, Nussinov R (2002) Multiple diverse ligands binding at a single protein site: a matter of pre-existing populations. Protein Sci 11:184–197

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1988) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  • Marechal JD, Perahia D (2008) Use of normal modes for structural modeling of proteins: the case study of rat heme oxygenase 1. Eur Biophys J 37:1157–1165

    Article  CAS  PubMed  Google Scholar 

  • May A, Zacharias M (2008) Protein-ligand docking accounting for receptor side chain and global flexibility in normal modes: evaluation on kinase inhibitor cross docking. J Med Chem 51:3499–3506

    Article  CAS  PubMed  Google Scholar 

  • McInnes C (2007) Virtual screening strategies in drug discovery. Curr Opin Chem Biol 11:494–502

    Article  CAS  PubMed  Google Scholar 

  • Miteva MA, Robert CH, Maréchal JD, Perahia D (2010) Receptor flexibility in ligand docking and virtual screening. In: Miteva MA (Ed) In silico lead discovery. Bentham Science Publishers (in press)

  • Moitessier N, Henry C, Maigret B, Chapleur Y (2004) Combining pharmacophore search, automated docking, and molecular dynamics simulations as a novel strategy for flexible docking. Proof of concept: docking of arginine-glycine-aspartic acid-like compounds into the alphavbeta3 binding site. J Med Chem 47:4178–4187

    Article  CAS  PubMed  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374:131–134

    Article  CAS  PubMed  Google Scholar 

  • Mouawad L, Perahia D (1996) Motions in hemoglobin studied by normal mode analysis and energy minimization: evidence for the existence of tertiary T-like, quaternary R-like intermediate structures. J Mol Biol 258:393–410

    Article  CAS  PubMed  Google Scholar 

  • Nabuurs SB, Wagener M, de Vlieg J (2007) A flexible approach to induced fit docking. J Med Chem 50:6507–6518

    Article  CAS  PubMed  Google Scholar 

  • Perahia D, Mouawad L (1995) Computation of low-frequency normal modes in macromolecules: improvements to the method of diagonalization in a mixed basis and application to hemoglobin. Comput Chem 19:241–246

    Article  CAS  PubMed  Google Scholar 

  • Polgar T, Keseru GM (2006) Ensemble docking into flexible active sites. Critical evaluation of FlexE against JNK-3 and beta-secretase. J Chem Inf Model 46:1795–1805

    Article  CAS  PubMed  Google Scholar 

  • Robert CH, Cherfils J, Mouawad L, Perahia D (2004) Integrating three views of Arf1 activation dynamics. J Mol Biol 337:969–983

    Article  CAS  PubMed  Google Scholar 

  • Rueda M, Bottegoni G, Abagyan R (2009) Consistent improvement of cross-docking results using binding site ensembles generated with elastic network normal modes. J Chem Inf Model 49:716–725

    Article  CAS  PubMed  Google Scholar 

  • Sander T, Liljefors T, Balle T (2008) Prediction of the receptor conformation for iGluR2 agonist binding: QM/MM docking to an extensive conformational ensemble generated using normal mode analysis. J Mol Graph Model 26:1259–1268

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Gahmen U, Brandsen J, Jones HD, Morgan DO, Meijer L, Vesely J, Kim SH (1995) Multiple modes of ligand recognition: crystal structures of cyclin-dependent protein kinase 2 in complex with ATP and two inhibitors, olomoucine and isopentenyladenine. Proteins 22:378–391

    Article  CAS  PubMed  Google Scholar 

  • Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84

    Article  CAS  PubMed  Google Scholar 

  • Sielecki TM, Boylan JF, Benfield PA, Trainor GL (2000) Cyclin-dependent kinase inhibitors: useful targets in cell cycle regulation. J Med Chem 43:1–18

    Article  CAS  PubMed  Google Scholar 

  • Sims PA, Wong CF, McCammon JA (2003) A computational model of binding thermodynamics: the design of cyclin-dependent kinase 2 inhibitors. J Med Chem 46:3314–3325

    Article  CAS  PubMed  Google Scholar 

  • Subramanian J, Sharma S, B-Rao C (2006) A novel computational analysis of ligand-induced conformational changes in the ATP binding sites of cyclin dependent kinases. J Med Chem 49:5434–5441

    Article  CAS  PubMed  Google Scholar 

  • Suhre K, Sanejouand YH (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    Article  CAS  PubMed  Google Scholar 

  • Tama F, Gadea FX, Marques O, Sanejouand YH (2000) Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41:1–7

    Article  CAS  PubMed  Google Scholar 

  • Tatsumi R, Fukunishi Y, Nakamura H (2004) A hybrid method of molecular dynamics and harmonic dynamics for docking of flexible ligand to flexible receptor. J Comput Chem 25:1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  CAS  PubMed  Google Scholar 

  • Thomas MP, McInnes C, Fischer PM (2006) Protein structures in virtual screening: a case study with CDK2. J Med Chem 49:92–104

    Article  CAS  PubMed  Google Scholar 

  • Totrov M, Abagyan R (2008) Flexible ligand docking to multiple receptor conformations: a practical alternative. Curr Opin Struct Biol 18:178–184

    CAS  PubMed  Google Scholar 

  • Wilson EB, Decius JC, Cross PC (1980) Molecular vibrations. Dover, New York

Download references

Acknowledgments

Support from the French National Research Institutes Inserm, CNRS, and the Institute Curie is greatly appreciated, as is that of the University Paris Diderot and University Paris-sud 11. We thank Dr. Jain for providing the Surflex program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria A. Miteva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sperandio, O., Mouawad, L., Pinto, E. et al. How to choose relevant multiple receptor conformations for virtual screening: a test case of Cdk2 and normal mode analysis. Eur Biophys J 39, 1365–1372 (2010). https://doi.org/10.1007/s00249-010-0592-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-010-0592-0

Keywords

Navigation