Skip to main content
Log in

Biophysical studies on chitosan-coated liposomes

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 ± 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH2 (at 2,800–3,000 cm−1) bands and the C=O (at 1,740 cm−1) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alamelu S, Panduranga K (1991) Studies on the carboxymethyl chitosan containing liposomes for their stability and controlled release of dapsone. J Microencapsul 8:505–519

    Article  PubMed  CAS  Google Scholar 

  • Bakker-Woudenberg IA, Storm G, Woodle MC (1994) Liposomes in the treatment of infections. J Drug Target 2:363–371

    Article  PubMed  CAS  Google Scholar 

  • Biruss B, Dietl R, Valenta C (2007) The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes. Chem Phys Lipids 148:84–90

    Article  PubMed  CAS  Google Scholar 

  • Blume A, Hübner W, Messner G (1988) Fourier transform infrared spectroscopy of 13CO-labeled phospholipids. Hydrogen bonding to carbonyl groups. Biochemistry 27:8239–8249

    Google Scholar 

  • Crommelin DJ (1984) Influence of lipid composition and ionic strength on the physical stability of liposomes. J Pharm Sci 73:1559–1563

    Article  PubMed  CAS  Google Scholar 

  • Dong C, Rogers JA (1991) Polymer-coated liposomes: stability and release of ASA from carboxymethyl chitin-coated liposomes. J Control Release 17:217–224

    Article  CAS  Google Scholar 

  • Filipovic-Grcic J, Skalko-Basnet N, Jalsenjal I (2001) Mucoadhesive chitosan-coated liposomes: characteristics and stability. J Microencapsul 18:3–12

    Article  PubMed  CAS  Google Scholar 

  • Graff A, Winterhalter M, Meier W (2001) Nanoreactors from polymer-stabilized liposomes. Langmuir 17:919–923

    Article  CAS  Google Scholar 

  • Guo J, Ping Q, Jiang G, Huang L, Tong Y (2003) Chitosan-coated liposomes: characterization and interaction with leuprolide. Int J Pharm 260:167–173

    Article  PubMed  CAS  Google Scholar 

  • Harrington KJ, Syrigos KN, Vile RG (2002) Liposomally-targeted cytotoxic drugs in the treatment of cancer. J Pharm Pharmacol 54:1573–1600

    Article  PubMed  CAS  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  CAS  Google Scholar 

  • Henriksen I, Smistad G, Karlsen J (1994) Interaction between liposomes and chitosan. Int J Pharm 101:227–236

    Article  CAS  Google Scholar 

  • Henriksen I, Vagen SR, Sande SA, Smitad G, Karlsen J (1997) Interactions between liposomes and chitosan II: effect of selected parameters on aggregation and leakage. Int J Pharm 146:193–204

    Article  CAS  Google Scholar 

  • Hirano S, Seino H, Akiyama Y, Nonaka I (1988) Biocompatibility of chitosan by oral and intravenous administration. Polym Eng Sci 59:897–901

    CAS  Google Scholar 

  • Klein JW, Ware BR, Barclay G, Petty HR (1987) Phospholipid dependence of calcium ion effects on electrophoretic mobilities of liposomes. Chem Phys Lipids 43:13–23

    Article  PubMed  CAS  Google Scholar 

  • Knapczyk J, Krowczynski L, Krzck J, Brzeski M, Nirnberg E, Schenk D, Struszcyk H (1989) Requirements of chitosan for pharmaceutical and biomedical applications. In: Skak-Braek G, Anthonsen T, Sandford P (eds) Chitin and chitosan: sources, chemistry, biochemistry, physical properties and applications. Elsevier, London, pp 657–663

  • Korkmaz F, Severcan F (2005) Effect of progesterone on DPPC membrane: evidence for lateral phase separation and inverse action in lipid dynamics. Arch Biochem Biophys 440:141–147

    Article  PubMed  CAS  Google Scholar 

  • Law SL, Lo WY, Pai SH, Teh GW (1988) The electrokinetic behavior of liposomes adsorbed with bovine serum albumin. Int J Pharm 43:257–260

    Article  CAS  Google Scholar 

  • Los DA, Murata N (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim Biophys Acta 1666:142–157

    PubMed  CAS  Google Scholar 

  • Mady MM, Ghannam MM, Khalil WA, Repp R, Markus M, Rascher W, Müller R, Fahr A (2004) Efficient gene delivery with serum into human cancer cells using targeted anionic liposomes. J Drug Target 12:11–18

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Yamada T, Kimura M, Oka T, Ohshima H, Kondo T (1991) Temperature- and ionic strength-induced conformational changes in the lipid head group region of liposomes as suggested by zeta potential data. Biophys Chem 41:175–183

    Article  PubMed  CAS  Google Scholar 

  • Matteucci ML, Thrall DE (2000) The role of liposomes in drug delivery and diagnostic imaging: a review. Vet Radiol Ultrasound 41:100–107

    Article  PubMed  CAS  Google Scholar 

  • Mendelsohn R, Moore D (1998) Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem Phys Lipids 96:141–157

    Article  PubMed  CAS  Google Scholar 

  • Morandat S, El Kirat K (2007) Solubilization of supported lipid membranes by octyl glucoside observed by time-lapse atomic force microscopy. Colloids Surf B 55:179–184

    Article  CAS  Google Scholar 

  • Nagai T, Sawayanagi Y, Nambu N (1984) Application of chitin and chitosan to pharmaceutical preparations. In: Zikakis JP (ed) Chitin, chitosan and related enzymes. Academic, New York, pp 21–39

    Google Scholar 

  • Oku N, Namba Y (1994) Long-circulating liposomes. Crit Rev Ther Drug Carr Syst 11:231–270

    CAS  Google Scholar 

  • Paolino D, Fresta M, Sinha P, Ferrari M (2006) Drug delivery systems. In: Webster JG (ed) Encyclopedia of medical devices and instrumentation, 2nd edn. Wiley, New York, pp 437–495

    Google Scholar 

  • Paternostre M, Virad M, Meyer O, Ghannam M, Ollivon M, Blumenthal R (1997) Solubilization and reconstitution of vesicular stomatitis virus envelope using octylglucoside. Biophys J 72:1683–1694

    Article  PubMed  CAS  Google Scholar 

  • Perugini P, Genta I, Pavanetto F, Conti B, Scalia S, Baruffini A (2000) Study on glycolic acid delivery by liposomes and microspheres. Int J Pharm 196:51–61

    Article  PubMed  CAS  Google Scholar 

  • Plank L, Dahl CE, Ware BR (1985) Effect of sterol incorporation on head group separation in liposomes. Chem Phys Lipids 36:319–328

    Article  PubMed  CAS  Google Scholar 

  • Severcan F, Sahin I, Kazanci N (2005) Melatonin strongly interacts with zwitterionic model membranes—evidence from Fourier transform infrared spectroscopy and differential scanning calorimetry. Biochim Biophys Acta 1668:215–222

    Article  PubMed  CAS  Google Scholar 

  • Steffe J (1996) Rheological methods in food process engineering, 2nd edn. Freeman Press, East Lansing

  • Takeuchi H, Yamamoto H, Niwa T, Hino T, Kawashima Y (1994) Mucoadhesion of polymer-coated liposomes to rat intestine in vitro. Chem Pharm Bull 42:1954–1956

    PubMed  CAS  Google Scholar 

  • Takeuchi H, Matsui Y, Yamamoto H, Kawashima Y (2003) Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J Control Release 86:235–242

    Article  PubMed  CAS  Google Scholar 

  • Taylor TM, Davidson PM, Bruce DB, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45:1–19

    Article  Google Scholar 

  • Wydro P, Krajweska B, Hac-Wydro K (2007) Chitosan as a lipid binder: a langmuir monolayer study of chitosan-lipid interactions. Biomacromolecules 8:2611–2617

    Article  PubMed  CAS  Google Scholar 

  • Zhang LF, Granick S (2006) How to stabilize phospholipid liposomes (using nanoparticles). Nano Lett 6:694–698

    Article  PubMed  CAS  Google Scholar 

  • Zho F, Neutra MR (2002) Antigen delivery to mucosa-associated lymphoid tissues using liposomes as a carrier. Biosci Rep 22:355–369

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen M. Mady.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mady, M.M., Darwish, M.M., Khalil, S. et al. Biophysical studies on chitosan-coated liposomes. Eur Biophys J 38, 1127–1133 (2009). https://doi.org/10.1007/s00249-009-0524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0524-z

Keywords

Navigation