Skip to main content
Log in

Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have studied fluctuations in membrane PD in Chara australis at frequencies between 1 and 500 mHz, by classical noise analysis and by inspection of the PD time-course. The former shows (1) a quasi-Lorentzian (1/f 2) rise of noise power as frequency falls, and (2) a marked increase in noise power when the cell is exposed to high salinity (Chara australis is a salt-sensitive species). The latter shows that, as well as initiating depolarization, exposure to 50 mM Na as either chloride or sulfate usually initiates a continuous but random series of small depolarizations which gives rise to the increase in noise and whose mechanism is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bisson MA, Walker NA (1980) The Chara plasmalemma at high pH. Electrical measurements show rapid specific passive uniport of H+ or OH. J Membr Biol 56:1–7

    Article  CAS  Google Scholar 

  • Bloomfield P (2000) Fourier analysis of time series: an introduction. Wiley, New York

    Book  Google Scholar 

  • Coster HGL, Smith JR (1977) Low-frequency impedance of Chara corallina:simultaneous measurements of the separate plasmalemma and tonoplastcapacitance and conductance. Aust J Plant Physiol 4:667–674

    Google Scholar 

  • Cramer GR (2002) Sodium–calcium interactions under salinity stress. In: Lauchli A, Luttge U (eds) Salinity: environment–plants–molecules. Kluwer, Dordrecht, pp 205–227

  • Ferrier JM, Morvan C, Lucas WJ, Dainty J (1979) Plasmalemma voltage noise in Chara corallina. Plant Physiol 63:709–714

    Article  CAS  PubMed  Google Scholar 

  • Findlay GP, Hope AB (1964) Ionic relations of cells of Chara australis: VII. The separate electrical characteristics of the plasmalemma and tonoplast. Aust J Biol Sci 17:62–77

    CAS  Google Scholar 

  • Fisahn J, Mikschl E, Hansen U-P (1986) Separate oscillations of the electrogenic pump and of a K+ channel in Nitella as revealed by simultaneous measurement of membrane potential and of resistance. J Exp Bot 37:34–47

    Article  CAS  Google Scholar 

  • Gradmann D (2001) Models for oscillations in plants. Aust J Plant Physiol 28:577–590

    CAS  Google Scholar 

  • Hansen U-P (1978) Do light-induced changes in the membrane potentialof Nitella reflect the feed-back regulation of a cytoplasmic parameter? J Membr Biol 41:197–224

    Article  Google Scholar 

  • Hayashi H, Hirakawa K (1979) The instability in the membrane potential of the Nitella internodal cell. J Phys Soc Japan 47:345–346

    Article  Google Scholar 

  • Hayashi H, Hirakawa K (1980) Nitella fluctuation and instability in the membrane potential near threshold. Biophys J 31:31–44

    Article  CAS  PubMed  Google Scholar 

  • Hill SE, Osterhout WJV (1938) Nature of the action current in Nitella. IV. Production of quick action currents by exposure to NaCl. J Gen Physiol 22:91–106

    Article  CAS  PubMed  Google Scholar 

  • Kay SM, Marple SL (1981) Spectrum analysis—a modern perspective. Proc IEEE 69:1380–1419

    Google Scholar 

  • Kishimoto U (1966) Repetitive action potentials in Nitella internodes. Plant Cell Physiol 7:547–558

    CAS  Google Scholar 

  • Korff H-M, Grahn J, Warncke J, Hansen U-P (1980) The noise spectrum of the membrane potential in Nitella. In: Spanswick RM, Lucas WJ, Dainty J (eds) Plant membrane transport: current conceptual issues. Elsevier, Amsterdam, pp 605–606

    Google Scholar 

  • Ogata K, Chilcott TC, Coster HGL (1983) Spatial variation of the electrical properties of Chara australis. I. External potentials and membrane conductance. Aust J Plant Physiol 10:339–351

    Article  CAS  Google Scholar 

  • Osterhout WJV (1917) Antagonism and permeability. Science 45:1153–1197

    Article  Google Scholar 

  • Ross S, Dainty J (1985) Membrane electrical noise in Chara corallina, I. A low frequency spectral component. Plant Physiol 79:1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Ross S, Dainty J (1986) Membrane electrical noise in Chara corallina, II. Effects of inhibitors on the low frequency spectral component. Plant Physiol 81:758–761

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Shabala L, Gradmann D, Chen Z-H, Newman I, Mancuso S (2006) Oscillations in plant membrane transport: model predictions, experimental validation and physiological implications. J Exp Bot 57:171–184

    Article  CAS  PubMed  Google Scholar 

  • Shepherd VA, Beilby MJ, Al Khazaaly S, Shimmen T (2008) Mechano-perception in Chara cells: the influence of salinity and calcium on touch-activated receptor potentials, action potentials and ion transport. Plant Cell Environ 31:1575–1591. doi:10.1111/j.1365-3040.2008.01866.x

    Article  CAS  PubMed  Google Scholar 

  • Spear DG, Barr JK, Barr GE (1969) Localization of hydrogen ion and chloride ion fluxes in Nitella. J Gen Physiol 54:397–414. doi:10.1085/jgp.54.3.397

    Article  CAS  PubMed  Google Scholar 

  • Toko K, Iiyama S, Yamafuji K (1984) Band-type dissipative structure in ion transport systems with cylindrical shape. J Phys Soc Japan 53:4070–4082. doi:10.1143/JPSJ.53.4070

    Article  Google Scholar 

  • Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na+, and Cl into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480

    CAS  Google Scholar 

  • Wacke M, Thiel G (2001) Electrically triggered all-or-none Ca2+ liberation during action potential in the giant alga Chara. J Gen Physiol 118:11–21. doi:10.1085/jgp.118.1.11

    Article  CAS  PubMed  Google Scholar 

  • Wacke M, Thiel G, Hutt M-T (2003) Ca2+ dynamics during membrane excitation of green alga Chara: model simulations and experimental data. J Membr Biol 191:179–192. doi:10.1007/s00232-002-1054-0

    Article  CAS  PubMed  Google Scholar 

  • Yao X, Bisson MA (1993) Passive proton conductance is the major reason for membrane depolarization and conductance increase in Chara buckellii in high-salt conditions. Plant Physiol 103:197–203

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Alan Walker or Mary Jane Beilby.

Additional information

“Proteins, membranes and cells: the structure-function nexus”. Contributions from the annual scientific meeting (including a special symposium in honour of Professor Alex Hope of Flinders University, South Australia) of the Australian Society for Biophysics held in Canberra, ACT, Australia, 28 September–1 October 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al Khazaaly, S., Alan Walker, N., Beilby, M.J. et al. Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur Biophys J 39, 167–174 (2009). https://doi.org/10.1007/s00249-009-0485-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-009-0485-2

Keywords

Navigation