Skip to main content
Log in

Spider silk softening by water uptake: an AFM study

  • Original Paper
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

We have investigated the mechanical properties of spider dragline fibers of three Nephila species under varied relative humidity. Force maps have been collected by atomic force microscopy. The Young’s modulus E was derived from the indentation curves of each pixel by the modified Hertz model. An average decrease in E by an order of magnitude was observed upon immersion of the fiber in water. Single fiber stretching experiments were carried out for comparison, and also showed a strong dependence on relative humidity. However, the absolute values of E are significantly higher than those obtained by indentation. The results of this work thus show that the elastic properties of spider silk are highly anisotropic, and that the silk softens significantly for both tensile and compressional strain (indentation) upon water uptake. In addition, the force maps indicate a surface structure on the sub-micron scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arne Schäfer (2003) Untersuchung mechanischer Eigenschaften von Zellen mit dem Kraftmikroskop - Einfluss von Myosin II. Disseration. Georg-August-Universität Göttingen

  • Becker N, Oroudjev E, Mutz S, Cleveland JP, Hansma PK, Hayashi CY, Makarov DE, Hannma HG (2003) Molecular nanosprings in spider capture-silk threads. Nat Mater 2:278–283

    Article  ADS  Google Scholar 

  • Bell FI, McEwen IJ, Viney C (2002) Fibre science: supercontraction stress in wet spider dragline. Nature 416:37

    Article  ADS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  ADS  Google Scholar 

  • Cleveland JP, Radmacher M, Hansma PK (1994) NATO advanced research workshop AIP. Schluchsee, Germany, pp 543–549

  • Cunniff PM, Fossey SA, Auerbach MA, Song JW (1994) Mechanical properties of major ampullate gland filk fibers extracted from Nephilia clavipes spiders. Silk polymers: materials science and biotechnology, Chap. 21

  • Dai L, Zhang Y, Ou-Yang Z (2003) Elastic theory of single spider silk protein molecule. Thin Solid Films 438–439:382–385

    Article  Google Scholar 

  • Domke J (2000) Mikromechanische Eigenschaften dünner Polymerfilme und lebender Zellen. Dissertation. Ludwig-Maximilian-Universität München

  • Domke J, Rachmacher M (1998) Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14:3320–3325

    Article  Google Scholar 

  • Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers and biological processes in water with AFM. Science 243:1586–1589

    Article  ADS  Google Scholar 

  • Elices M, Pérez-Rigueiro J, Plaza GR, Guinea GV (2005) Finding inspiration in Argiope trifasciata spider silo fibers. J Mater 57:60–66

    Google Scholar 

  • Fossey SA, Kaplan DL (1999) Silk protein. In: Polymer data handbook. Oxford University Press, Oxford

    Google Scholar 

  • Fritz M, Radmacher M, Gaub HE (1994) Granula motion and membrane spreading during activation of human platelets imaged by AFM. Biophys J 66:1328–1334

    Article  Google Scholar 

  • Glišović A, Thieme J, Guttmann P, Salditt T (2007) Transmission X-ray microscopy of spider dragline silk. Int J Biol Macromol 40:87–95

    Article  Google Scholar 

  • Gosline JM, Pollak CC, Guerette PA, Cheng A, DeMont ME, Denny MW (1994) Elastomeric network models for the frame and viscid silks from the orb web of the spider Araneus diadematus. Silk polymers: materials science and biotechnology. In: Kaplan D, Adams WW, Farmer B, Viney C (eds). American Chemical Society, Washington, DC, pp 328–341

  • Gosline JM, Guerette PA, Ortlepp CS, Savage KN (1999) The mechanical design of spider silks: from Fibroin sequence to mechanical function. J Exp Biol 202:3295–3303

    Google Scholar 

  • Grubb DT, Jelinski LW (1997) Small angle X-ray scattering of spider dragline silk. Marcomolecules 30:2860–2867

    Article  ADS  Google Scholar 

  • Hämmerlin G, Hoffmann K-H (1989) Numerische Mathematik. Springer, Berlin

    MATH  Google Scholar 

  • Hertz H (1882) Über die Berührung fester elastischer Körper. Reine Angew Mathematik 92:156–171

    Google Scholar 

  • Hinman MB, Lewis RV (1992) Isolation of a clone encoding a second dragline silk fibroin, Nephila Clavipes dragline silk is a two protein fiber. J Biol Chem 267:19320–19324

    Google Scholar 

  • Johnson KL (1994) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  • Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518

    Article  ADS  Google Scholar 

  • Kishore AI, Herberstein ME, Craig CL, Separovic F (2002) Solid-state NMR relaxation studies of Australian spider silks. Biopolymers 61:287–297

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1965) Band 7 Elastizitätstheorie. Lehrbuch der theoretischen Physik. Verlag Harri Deutsch, Frankfurt am Main

  • Magoshi J, Magoshi Y, Nakamura S (1985) Physical properties and structure of silk. Polym Comm 26:309–311

    Google Scholar 

  • Pèrez-Rigueiro J, Viney C, Llorca J, Elices M (1998) Silkworm silk as an engineering material. J Appl Polym Sci 70:2439–2447

    Article  Google Scholar 

  • Pérez-Rigueiro J, Elices M, Llorca M, Viney C (2001) Tensile properties of Argiope trifasciata drag line silk obtained from the spider’s web. J Appl Polym Sci 82:2245–2251

    Article  Google Scholar 

  • Plaza GR, Guinea GV, Pérez-Rigueiro J, Elices M (2006) Thermo-hygro-mechanical behaviour of spider dragline silk: glassy and rubbery states. J Polym Sci 44:994–999

    Google Scholar 

  • Putthanarat S, Stribeck N, Fossey SA, Eby RK, Adams WW (2000) Investigation of the nanofibrils of silk fibers. Polymer 41:7735–7747

    Article  Google Scholar 

  • Radmacher M (1999) Single molecus feel the force. Phys World 12(9):33–37

    Google Scholar 

  • Radmacher M, Fritz M, Hansma HG, Hansma PK (1994a) Direct observation of enzyme activity with the atomic force microscope. Science 265:1577–1579

    Article  ADS  Google Scholar 

  • Radmacher M, Cleveland JP, Fitz M, Hansma HG, Hansma PK (1994b) Mapping interaction forces with the atomic force microscope. Biophys J 66:2159–2165

    Google Scholar 

  • Radmacher M, Fritz M, Hansma PK (1995) Imaging soft samples with the atomic force microscope: gelatin in water and propanol. Biophys J 69:264–270

    Google Scholar 

  • Radmacher M, Fritz M, Kacher MK, Cleveland JP, Hansma PK (1996) Measuring the elastic properties of human platelets with the atomic force microscope. Biophys J 70:556–567

    Google Scholar 

  • Riekel C, Vollrath F (2001). Spider silk fibre extrusion: combined wide- and small-angle X-ray microdiffraction experiments. Int J Biol Macromol 29:203–210

    Article  Google Scholar 

  • Riekel C, Müller M, Vollrath F (1999) In situ X-ray diffraction during forced silking of spider silk. Macromolecules 32:4464–4466

    Article  ADS  Google Scholar 

  • Rotsch C, Jacobson K, Radmacher M (1999) Dimensional and mechanical dynamics of active and stable edges in motile fibroblasts investigated by atomic force microscopy. Proc Natl Acad Sci USA 96:921–926

    Article  ADS  Google Scholar 

  • Schäfer A, Radmacher M (2005) Influence of myosin II activity on stiffness of fibroblast cells. Acta Biomaterialia 1:273–280

    Article  Google Scholar 

  • Shao Z, Vollrath F (1999) The effect of solvents on the contraction and mechanical properties of spider silk. Polymer 40:1799–1806

    Article  Google Scholar 

  • Sneddon IN (1965) The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57

    Article  MATH  MathSciNet  Google Scholar 

  • Tao NJ, Lindsay SM, Lees S (1992) Measuring the microelastic properties of biological material. Biophys J 63:1165–1169

    Google Scholar 

  • Vollrath F, Edmonds DT (1989) Modulation of the mechanical properties of spider silk by coating with water. Nature 340:305–307

    Article  ADS  Google Scholar 

  • Vollrath F, Knight DP (2001) Liquid crystalline spinning of spider silk. Nature 410:541–548

    Article  ADS  Google Scholar 

  • Vollrath F, Porter D (2006) Spider silk as archetypal protein elastomer. Soft Matter 2:377–385

    Article  Google Scholar 

  • Weisenhorn AL, Khorsandi M, Kasas S, Gotozos V, Celio MR, Butt HJ (1993) Deformation and height anomaly of soft surfaces studied with the AFM. Nanotechnology 4:106–113

    Article  ADS  Google Scholar 

  • Work RW, Emerson PD (1982) An apparatus and technique for the forcible silking of spiders. J Arachnol 10:1–10

    Google Scholar 

  • Xu M, Lewis RV (1990) Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci 87:7120–7124

    Article  ADS  Google Scholar 

  • Zhou H, Zhang Y (2005) Hierarchical chain model of spider capture silk elasticity. Phys Rev Lett 94:028104-1–028104-4

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Salditt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, A., Vehoff, T., Glišović, A. et al. Spider silk softening by water uptake: an AFM study. Eur Biophys J 37, 197–204 (2008). https://doi.org/10.1007/s00249-007-0216-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0216-5

Keywords

Navigation