Skip to main content
Log in

Biomimetic tethered lipid membranes designed for membrane-protein interaction studies

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The complexity of the biological membranes restricts their direct investigation at the nanoscale. Lipid bilayer membranes have been developed as a model of biological membranes in order to allow the interaction and insertion of peptides and membrane proteins in a functional manner. Promising models have been developed in the past two decades and tethered bilayer design traduces constant improvement of membrane models. The formation of protein free solid tethered membranes can be achieved by direct vesicle fusion, Langmuir–Blodgett, Langmuir–Schaffer transfers, self assembly of various building blocks such as thiol on gold, silane on quartz, grafting of polymers, as well as ligand receptor recognition. In this review, the current state of different tethered bilayer membrane will be described. We will focus on critical analysis of the main advantages/drawbacks of each kind of model construction and their ability to allow protein incorporation in non-denaturing conditions. Some of the current drawbacks encountered in these biomimetic models can be overcome using an innovative tethered bilayer design based on a reliable and fast formation method. The successful protein incorporation of the Adenylate Cyclase produced by Bordetella pertussis and the voltage dependent anion channel (VDAC) was demonstrated on this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

DSPE-PEG-NHS:

1.2-Distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene-glycol)-N-hydroxysuccinimide

EggPC:

Egg-phosphatidyl-choline

FRAP:

Fluorescence recovery after photobleaching

IS:

Impedance spectroscopy

LB:

Langmuir Blodgett

MeO-PEG-PDP:

Methoxy-poly(ethylene glycol)-2000-N-[3-(2-(pyridyldithio)propionate]

NBD-DPPE:

1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-NBD (7-nitro-2,1,3-benzoxadiazol-4-yl)

PEI:

Polyethyleneimine

PEG:

Polyethylene glycol

POPC:

1-Palmitoyl 2-oleoyl phosphatidylcholine

QCM-D:

Quartz crystal microbalance with dissipation

SPR:

Surface plasmon resonance

VDAC:

Voltage dependent anion channel

References

  • Ataka K, Giess F, Knoll W, Naumann R, Haber-Pohlmeiter S, Richter B, Heberle J (2004) Oriented attachment and membrane reconstitution of His-tagged cytochrome c oxidase to a gold electrode: in situ monitoring by surface enhanced infrared adsorption spectroscopy. J Am Chem Soc 126:16199–16206

    Article  Google Scholar 

  • Atanasov V, Knorr N, Duran RS, Ingebrandt S, Offenhausser A, Knoll W, Köper I (2005) Membrane on a chip: a functional tethered lipid bilayer membrane on silicon oxide surfaces. Biophys J 89:1780–1788

    Article  Google Scholar 

  • Atanasov V, Atanasova P, Vockenroth I, Knorr N, Köper I (2006) A molecular toolkit for highly insulating tethered bilayer lipid membranes in various subtrates. Bioconjug Chem 17:631–637

    Article  Google Scholar 

  • Bain CD, Whitesides GM (1989) A study by contact angle of the acid-base behavior of monolayers containing w-mercaptocarboxylic acids adsorbed on gold: an example of reactive spreading. Langmuir 5:1370–1378

    Article  Google Scholar 

  • Bayerl T, Bloom M (1990) Physical properties of single phospholipid bilayers adsorbed to micro glass beads. A new vesicular model system studied by 2H-nuclear magnetic resonance. Biophys J 58:357–362

    Google Scholar 

  • Beckmann M, Nollert P, Kolb HA (1998) Manipulation and molecular resolution of a phosphatidylcholine-supported planar bilayer by atomic force microscopy. J Membr Biol 161:227–233

    Article  Google Scholar 

  • Brian AA, McConnell HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci USA 81:6159–6163

    Article  ADS  Google Scholar 

  • Bunjes N, Schmidt EK, Jonczyk A, Rippmann F, Beyer D, Ringsdorf H, Graber P, Knoll W, Naumann R (1997) Thiopeptide-supported lipid layers on solid substrates. Langmuir 13:6188–6194

    Article  Google Scholar 

  • Cezanne L, Lopez A, Loste F, Parnaud G, Saurel O, Demange P, Tocanne JF (1999) Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers. Biochemistry 38:2779–2786

    Article  Google Scholar 

  • Cheng Y, Boden N, Bushby RJ, Clarkson S, Evans SD, Knowles PF, Marsh A, Miles RE (1998) Attenuated total reflection Fourier transform infrared spectroscopic characterization of fluid lipid bilayers tethered to solid supports. Langmuir 14:839–844

    Article  Google Scholar 

  • Colombini M, Blachly-Dyson E, Forte M (1996) VDAC, a channel in the outer mitochondrial membrane. Ion Channels 4:169–202

    Google Scholar 

  • Cornell BA, Braach-Maksvytis VL, King LG, Osman PD, Raguse B, Wieczorek L, Pace RJ (1997) A biosensor that uses ion-channel switches. Nature 387:580–583

    Article  ADS  Google Scholar 

  • Deniaud A, Rossi C, Berquand A, Homand J, Campagna S, Knoll W, Brenner C, Chopineau J (2007) The voltage-dependent anion channels transports calcium ions throught biomimetic membranes. Langmuir 23(7):3898–3905

    Article  Google Scholar 

  • Deverall MA, Gindl E, Sinner E-K, Besir H, Ruehe J, Saxton MJ, Naumann CA (2005) Membrane lateral mobility obstructed by polymer-tethered lipids studied at the single molecule level. Biophys J 88:1875–1886

    Article  Google Scholar 

  • Duschl C, Liley M, Corradin G, Vogel H (1994) Biologically addressable monolayer structures formed by templates of sulfur-bearing molecules. Biophys J 67:1229–37

    Google Scholar 

  • Elender G, Khuner M, Sackmann E (1996) Functionalisation of Si/SiO2 and glass surfaces with ultrathin dextran films and deposition of lipid bilayers. Biosens Bioelectron 11:565–577

    Article  Google Scholar 

  • Elie-Caille C, Fliniaux O, Pantigny J, Maziere J-C, Bourdillon C (2005) Self-assembly of solid-supported membranes using a triggered fusion of phospholipid-enriched proteoliposomes prepared from the inner mitochondrial membrane. Langmuir 21:4661–4668

    Article  Google Scholar 

  • Findlay HE, Booth PJ (2006) The biological significance of lipid-protein interactions. J Phys Condens Matter 18:1281–1291

    Article  ADS  Google Scholar 

  • Fisher MI, Tjarnhage T (2000) Structure and activity of lipid membrane biosensor surfaces studied with atomic force microscopy and a resonant mirror. Biosens Bioelectron 15:463–471

    Article  Google Scholar 

  • Friedrich MG, Giess F, Naumann R, Ataka K, Heberle J, Hrabakova J, Murgida DH, Hildebrandt P (2004) Active site structure and redox processes of cytochrome c oxidase immobilised in a novel biomimetic lipid membrane on a electrode. Chem Commun (21):2376–2377

  • Giess F, Friedrich MG, Heberle J, Naumann RL, Knoll W (2004) The protein-tethered lipid bilayer: a novel mimic of the biological membrane. Biophys J 87:3213–3220

    Article  Google Scholar 

  • Glazier SA, Vanderah DJ, Plant AL, Bayley H, Valincius G, Kasianowicz JJ (2000) Reconstitution of pore-forming toxin α-hemolysin in phospholipid/18-octadecyl-1-thiahexa(ethylene oxide) and phospholipid/n-octadecanethiol supported bilayer membranes. Langmuir 16:10428–10435

    Article  Google Scholar 

  • Groves JT, Ulman N, Boxer SG (1997) Micropatterning fluid lipid bilayers on solid supports. Science 275:651–653

    Article  Google Scholar 

  • Groves JT, Ulman N, Cremer PS, Boxer SG (1998) Substrate-membrane interactions: mechanisms for imposing patterns on a fluid bilayer membrane. Langmuir 14:3347–3350

    Article  Google Scholar 

  • Heyse S, Ernst OP, Dienes Z, Hofmann KP, Vogel H (1998) Incorporation of rhodopsin in laterally structured supported membranes : observation of transducin activation with spatially and time-resolved surface plasmon resonance. Biochemistry 37:507–522

    Article  Google Scholar 

  • Hinterdorfer P, Baber G, Tamm LK (1994) Reconstitution of membrane fusion sites. A total internal reflection fluorescence microscopy study of influenza hemagglutinin-mediated membrane fusion. J Biol Chem 269:20360–20368

    Google Scholar 

  • Jeuken LJC, Connell SD, Nurnabi M, O’Reilly J, Henderson PJF, Evans SD, Bushby RJ (2005) Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract. Langmuir 21:1481–1488

    Article  Google Scholar 

  • Jeuken LJC, Connell SD, Henderson PJF, Gennis RB, Evans SD, Bushby RJ (2006) Redox enzymes in tethered membranes. J Am Chem Soc 128:1711–1716

    Article  Google Scholar 

  • Johnson SJ, Bayerl TM, McDermott DC, Adam GW, Rennie AR, Thomas RK, Sackmann E (1991) Structure of an adsorbed dimyristoylphosphatidylcholine bilayer measured with specular reflection of neutrons. Biophys J 59:289–294

    Google Scholar 

  • Jung LS, Shumaker-Parry JS, Campbell CT, Yee SS, Gelb MH (2000) Quantification of tight binding to surface-immobilized phospholipid vesicles using surface plasmon resonance: binding constant of phospholipase A2. J Am Chem Soc 122:4177–4184

    Article  Google Scholar 

  • Kalb E, Frey S, Tamm LK (1992) Formation of supported planar bilayers by fusion of vesicles to supported phospholipid monolayers. Biochim Biophys Acta 1103:307–316

    Article  Google Scholar 

  • Kiessling V, Tamm LK (2003) Measuring distances in supported bilayers by fluorescence interference-contrast microscopy: polymer supports and SNARE proteins. Biophys J 84:408–418

    Google Scholar 

  • Kleinschmidt JH, Tamm LK (2002) Secondary and tertiary structure formation of the beta-barrel membrane protein OmpA is synchronized and depends on membrane thickness. J Mol Biol 324:319–330

    Article  Google Scholar 

  • Knoll W, Frank CW, Heibel C, Naumann R, Offenhausser A, Ruhe J, Schmidt EK, Shen WW, Sinner A (2000) Functional tethered lipid bilayers. J Biotechnol 74:137–158

    Google Scholar 

  • Ladant D, Ullmann A (1999) Bordatella pertussis adenylate cyclase: a toxin with multiple talents. Trends Microbiol 7:172–176

    Article  Google Scholar 

  • Lang H, Duschl C, Gratzel M, Vogel H (1992) Self-assembled of thiolipid molecular layers on gold surfaces: optical and electrochemical characterization. Thin Solid Films 210/211:818–821

    Article  Google Scholar 

  • Lang H, Duschl C, Vogel H (1994) A new class of thiolipids for the attachment of lipid bilayers on gold surfaces. Langmuir 10

  • Ma C, Srinivasan MP, Waring AJ, Lehrer RI, Longo ML, Stroeve P (2003) Supported lipid bilayers lifted from the substrate by layer-by-layer polyion cushions on self-assembled monolayers. Colloids Surf B Biointerfaces 28:319–329

    Article  Google Scholar 

  • Majewski J, Kuhl TL, Gerstenberg MC, Israelachvili JN, Smith GS (1997) Structure of phospholipid monolayers containing poly(ethylene glycol) lipids at the air–water interface. J Phys Chem B 101:3122–3129

    Article  Google Scholar 

  • McConnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta 864:95–106

    Google Scholar 

  • Merzlyakov M, Li E, Gitsov I, Hristova K (2006) Surface-supported bilayers with transmembrane proteins: role of the polymer cushion revisited. Langmuir 22:10145–10151

    Article  Google Scholar 

  • Michalke A, Schurholz T, Galla H-J, Steinem C (2001) Membrane activity of an anion channel from Clavibacter michiganense ssp. nebraskense. Langmuir 17:2251–2257

    Article  Google Scholar 

  • Munro JC, Frank CW (2004) In situ formation and characterization of poly(ethylene glycol)-supported lipid bilayers on gold surfaces. Langmuir 20:10567–10575

    Article  Google Scholar 

  • Naumann CA, Prucker O, Lehmann T, Ruhe J, Knoll W, Frank CW (2002) The polymer-supported phospholipid bilayer: tethering as a new approach to substrate-membrane stabilization. Biomacromolecules 3:27–35

    Article  Google Scholar 

  • Naumann R, Jonczyk A, Kopp R, v.Esch J, Ringsdorf H, Knoll W, Bunjes N (1997) Coupling of proton translocation through ATPase incorporated into supported lipid bilayers to an electrochemical process. Bioelectrochem Bioenerg 42:241–247

    Article  Google Scholar 

  • Naumann R, Schmidt EK, Jonczyk A, Fendler K, Kadenbach B, Liebermann T, Offenhausser A, Knoll W (1999) The peptide-tethered lipid membrane as a biomimetic system to incorporate cytochrome c oxidase in a functionally active form. Biosens Bioelectron 14:651–662

    Article  Google Scholar 

  • Naumann R, Schiller SM, Giess F, Grohe B, Hartman KB, Karcher I, Koper I, Lubben J, Vasilev K, Knoll W (2003a) Tethered lipid bilayers on ultraflat gold surfaces. Langmuir 19:5435–5443

    Article  Google Scholar 

  • Naumann R, Walz D, Schiller SM, Knoll W (2003b) Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes. J Electroanal Chem 550–551:241–252

    Article  Google Scholar 

  • Nollert P, Kiefer H, Jahnig F (1995) Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. Biophys J 69:1447–1455

    Google Scholar 

  • Plant AL (1993) Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold. Langmuir 9:2764–2767

    Article  Google Scholar 

  • Plant AL (1999) Supported hybrid bilayer membranes as rugged cell membrane mimics. Langmuir 15:5128–5135

    Article  Google Scholar 

  • Prime KL, Whitesides GM (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167

    Article  ADS  Google Scholar 

  • Proux-Delrouyre V, Elie C, Laval J-M, Moiroux J, Bourdillon C (2002) Formation of tethered and streptavidin-supported lipid bilayers on a microporous electrode for the reconstitution of membranes of large surface area. Langmuir 18:3263–3272

    Article  Google Scholar 

  • Rädler J, Strey H, Sackmann E (1995) Phenomenology and kinetics of lipid bilayer spreading on hydrophilic surfaces. Langmuir 11:4539–4548

    Article  Google Scholar 

  • Radler U, Mack J, Persike N, Jung G, Tampe R (2000) Design of supported membranes tethered via metal-affinity ligand-receptor pairs. Biophys J 79:3144–3152

    Google Scholar 

  • Raguse B, Braach-Maksvytis V, Cornell BA, King LG, Osman PD, Pace R, Wieczorek L (1998) Tethered lipid bilayer membranes: formation and ionic reservoir characterization. Langmuir 14:648–659

    Article  Google Scholar 

  • Reimhult E, Hook F, Kasemo B (2003) Intact vesicle adsorption and supported biomembrane formation from vesicles in solution: influence of surface chemistry, vesicle size, temperature, and osmotic pressure. Langmuir 19:1681–1691

    Article  Google Scholar 

  • Reviakine I, Brisson A (2001) Streptavidin 2D crystals on supported phospholipid bilayers: toward constructing anchored phospholipid bilayers. Langmuir 17:8293–8299

    Article  Google Scholar 

  • Robelek R, Lemker ES, Wiltschi B, Kirste V, Naumann R, Oesterhelt D, Sinner EK (2007) Incorporation of in vitro synthesized GPCR into a tethered artificial lipid membrane system. Angew Chem Int Ed Engl 46:605–608

    Article  Google Scholar 

  • Rossi C, Homand J, Bauche C, Hamdi H, Ladant D, Chopineau J (2003) Differential mechanisms for calcium-dependent protein/membrane association as evidenced from SPR-binding studies on supported biomimetic membranes. Biochemistry 42:15273–15283

    Article  Google Scholar 

  • Rossi C, Briand E, Parot P, Odorico M, Chopineau J (2007) Surface response methodology for the study of supported membrane formation. J Phys Chem B. [Epub ahead of print]

  • Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    Article  ADS  Google Scholar 

  • Sackmann E, Tanaka M (2000) Supported membranes on soft polymer cushions: fabrication, characterization and applications. Trends Biotechnol 18:58–64

    Article  Google Scholar 

  • Salafsky J, Groves JT, Boxer SG (1996) Architecture and function of membrane proteins in planar supported bilayers: a study with photosynthetic reaction centers. Biochemistry 35:14773–14781

    Article  Google Scholar 

  • Schiller SM, Naumann R, Lovejoy K, Kunz H, Knoll W (2003) Archeas analogue thiolipids for tethered bilayer lipid membrane on ultrasmooth gold surfaces. Angew Chem Int Ed Engl 42:208–211

    Article  Google Scholar 

  • Schmidt EK, Liebermann T, Kreiter M, Jonczyk A, Naumann R, Offenhausser A, Neumann E, Kukol A, Maelicke A, Knoll W (1998) Incorporation of the acetylcholine receptor dimer from torpedo california in a peptide supported lipid membrane investigated by surface plasmon and fluorescence spectroscopy. Biosens Bioelectron 13:585–591

    Article  Google Scholar 

  • Seitz M, Wong JY, Park CK, Alcantar NA, Israelachvili JN (1998) Formation of tethered supported bilayers via membrane-inserting reactive lipids. Thin solid films 327–329:767–771

    Article  Google Scholar 

  • Seitz M, Ter-Ovanesyan E, Hausch M, Park CK, Zasadzinski JA, Zentel R, Israelachvili JN (2000) Formation of tethered supported bilayers by vesicle fusion onto lipopolymer monolayers promoted by osmotic stress. Langmuir 16:6067–6070

    Article  Google Scholar 

  • Spinke J, Yang J, Wolf H, Liley M, Ringsdorf H, Knoll W (1992) Polymer-supported bilayer on a solid substrate. Biophys J 63:1667–1671

    Google Scholar 

  • Tamm L, McConnell H (1985) Supported phospholipid bilayers. Biophys J 47:105–113

    Google Scholar 

  • Tamm LK, Crane J, Kiessling V (2003) Membrane fusion: a structural perspective on the interplay of lipids and proteins. Curr Opin Struct Biol 13:453–466

    Article  Google Scholar 

  • Tamm LK, Han X, Li Y, Lai AL (2002) Structure and function of membrane fusion peptides. Biopolymers 66:249–260

    Article  Google Scholar 

  • Tanaka M, Sackmann E (2005) Polymer-supported membranes as models of the cell surface. Nature 437:656–663

    Article  ADS  Google Scholar 

  • Terrettaz S, Ulrich WP, Guerrini R, Verdini A, Vogel H (2001) Immunosensing by a synthetic lignad-gated ion channel. Angew Chem Int Ed Engl 40:1740–1743

    Article  Google Scholar 

  • Terrettaz S, Mayer M, Vogel H (2003) Highly electrically insulating tethered lipid bilayers for probing the function of ion channel proteins. Langmuir 19:5567–5569

    Article  Google Scholar 

  • Wagner ML, Tamm LK (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: silane-polyethyleneglycol-lipid as a cushion and covalent linker. Biophys J 79:1400–1414

    Google Scholar 

  • Wagner ML, Tamm LK (2001) Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers. Biophys J 81:266–275

    Article  Google Scholar 

  • Wong JY, Majewski J, Seitz M, Park CK, Israelachvili JN, Smith GS (1999) Polymer-cushioned bilayers. I. A structural study of various preparation methods using neutron reflectometry. Biophys J 77:1445–1457

    Google Scholar 

  • Yoshina-Ishii C, Boxer SG (2003) Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc 125:3696–3697

    Article  Google Scholar 

  • Zhang L, Booth CA, Stroeve P (2000) Phosphatidylserine/cholesterol bilayers supported on a polycation/alkylthiol layer pair. J Colloid Interface Sci 228:82–89

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge Dr. Ingo Köper (Max Planck Institute for Polymer Research) for scientific support and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joël Chopineau.

Additional information

Presented at the joint biannual meeting of the SFB-GEIMM-GRIP, Anglet France, 14–19 October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, C., Chopineau, J. Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur Biophys J 36, 955–965 (2007). https://doi.org/10.1007/s00249-007-0202-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0202-y

Keywords

Navigation