Skip to main content
Log in

Membrane perturbation by an external electric field: a mechanism to permit molecular uptake

  • Review
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Electropermeabilisation is a well established physical method, based on the application of electric pulses, which induces the transient permeabilisation of the cell membrane. External molecules, otherwise nonpermeant, can enter the cell. Electropermeabilisation is now in use for the delivery of a large variety of molecules, as drugs and nucleic acids. Therefore, the method has great potential in the fields of cancer treatment and gene therapy. However many open questions about the underlying physical mechanisms involved remain to be answered or fully elucidated. In particular, the induced changes by the effects of the applied field on the membrane structure are still far from being fully understood. The present review focuses on questions related to the current theories, i.e. the basic physical processes responsible for the electropermeabilisation of lipid membranes. It also addresses recent findings using molecular dynamics simulations as well as experimental studies of the effect of the field on membrane components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

PC:

Phosphatidyl-Choline

PS:

Phosphatidyl-Serine

PE:

Phosphatidyl-Ethanolamine

SM:

Sphingomyelin

DOPC:

1,2-Dioleoyl-sn-Glycero-3-Phosphocholine

DOPS:

1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine

NBD:

7-Nitrobenz-2-oxa-1,3-diazol-4-yl

References

  • Abidor IG, Arakelyan VB, Chernomordik LV, Chizmadzhev YA, Pastushenko VF, Tarasevich (1979) Electric breakdown of bilayer membranes I: the main experimental facts and their qualitative description. Bioelectrochem Bioenerg 6:37–52

    Article  Google Scholar 

  • Antov Y, Barbul A, Mantsur H, Korenstein R (2005) Electroendocytosis: exposure of cells to pulsed low electric fields enhances adsorption and uptake of macromolecules. Biophys J 88:2206–2223

    Article  Google Scholar 

  • Barnett A, Weaver JC (1991) Electroporation: a unified, quantitative theory of reversible electrical breakdown and mechanical rupture in artificial planar bilayer membranes. Biolectrochem Bioenerg 25:163–182

    Article  Google Scholar 

  • Beebe SJ, Schoenbach KH (2005) Nanosecond pulsed electric fields: a new stimulus to activate intracellular signalling. J Biomed Biotechnol 4:297–300

    Article  Google Scholar 

  • Beebe SJ, White J, Blackmore PF, Deng Y, Somers K and Schoenbach KH (2003) Diverse effects of nanosecond pulsed electric fields on cells and tissues. DNA Cell Biol 22:785–796

    Article  Google Scholar 

  • Belehradek M, Domenge C, Luboinski B, Orlowski S, Belehradek J Jr, Mir LM (1993) Electrochemotherapy, a new antitumor treatment. First Clin Phase I-II Trial Cancer 72:3694–700

    Google Scholar 

  • Bernhardt J, Pauly H (1973) On the generation of potential difference across the membrane of ellipsoidal cells in an alternating electric field. Biophysik 10:89–98

    Article  Google Scholar 

  • Bigey P, Bureau MF, Scherman D (2002) In vivo plasmid DNA electrotransfer. Curr Opin Biotechnol 13:443–447

    Article  Google Scholar 

  • Cartee LA, Plonsey R (1992) The transient subthreshold response of spherical and cylindrical cell models to extracellular stimulation. IEEE Trans Biomed Eng 39:76–85

    Article  Google Scholar 

  • Chen W (2005) Electroconformational denaturation of membrane proteins. Ann N Y Acad Sci 1066:92–105

    Article  ADS  Google Scholar 

  • Chen W, Lee RC (1994) Altered ion channel conductance and ionic selectivity induced by large imposed membrane potential pulse. Biophys J 67:603–612

    Google Scholar 

  • Crowley JM (1973) Electrical breakdown of bimolecular lipid membranes as an electromechanical instability. Biophys J 13:711–24

    Google Scholar 

  • Derjaguin BV, Gutop YV (1961) Theory of the breakdown (rupture) of free films. Kolloidn Zh 24:370–374

    Google Scholar 

  • Devaux PF (2000) Is lipid translocation involved during endo-exocytosis? Biochimie 82:497–509

    Article  Google Scholar 

  • Dressler V, Schwister K, Haest CW, Deuticke B (1983) Dielectric breakdown of the erythrocyte membrane enhances transbilayer mobility of phospholipids. Biochim Biophys Acta 732:304–307

    Article  Google Scholar 

  • Favard C, Dean DS, Rols MP (2007) Electrotransfer as a non viral method of gene delivery. Curr Gene Ther 7:67–77

    Article  Google Scholar 

  • Gabriel B, Teissie J (1997) Direct observation in the millisecond time range of fluorescent molecule asymmetrical interaction with the electropermeabilized cell membrane. Biophys J 73:2630–2637

    Google Scholar 

  • Gehl J, Sorensen TH, Nielsen K, Raskmark P, Nielsen SL, Skovsgaard T, Mir LM (1999) In vivo electroporation of skeletal muscle: threshold, efficacy and relation to electric field distribution. Biochim Biophys Acta 1428:233–240

    Google Scholar 

  • Gilbert RA, Jaroszeski MJ, Heller R (1997) Novel electrode designs for electrochemotherapy. Biochim Biophys Acta 1334:9–14

    Google Scholar 

  • Glaser RW, Leikin SL, Chernomordik LV, Pastushenko VF, Sokirko AI (1988) Reversible electrical breakdown of lipid bilayers and formation and evolution of pores. Biochem Biophys Acta 940:275–287

    Article  Google Scholar 

  • Golzio M, Teissie J, Rols MP (2002) Direct visualization at the single-cell level of electrically mediated gene delivery. Proc Natl Acad Sci U S A 99:1292–1297

    Article  ADS  Google Scholar 

  • Gowrishankar TR, Esser AT, Vasilkoski Z, Smith KC, Weaver JC (2006) Microdosimetry for conventional and supra-electroporation in cells with organelles. Biochem Biophys Res Comm 341:1266–1276

    Article  Google Scholar 

  • Haest CWM, Kamp D, Deuticke B (1997) Transbilayer reorientation of phospholipids probes in the human erythrocytes membrane. Lessons from studies on electroporated and resealed cells. Biochim Biophys Acta 1325:17–33

    Article  Google Scholar 

  • Hibino M, Itoh H, Kinosita K, (1993) Time courses of cell electroporation as revealed by submicrosecond imaging of transmembrane potential. Biophys J 64:1789–1800

    Google Scholar 

  • Hol WGJ (1985) Effects of the alpha-helix dipole upon the functioning and structure of proteins and peptides. Adv Biophys 19:133–165

    Article  Google Scholar 

  • Isambert H (1998) Understanding the electroporation of cells and artificial bilayer membranes. Phys Rev Lett 80:3404–3407

    Article  ADS  Google Scholar 

  • Janmey PA and Kinnunen PKJ (2006) Biophysical properties of lipids and dynamics membranes. Trends Cell Biol 16:538–546

    Article  Google Scholar 

  • Karateki E, Sandre O, Guitouni H, Borghi N, Puech P-H, Brochard-Wyart F (2003) Cascades of transient pores in giant vesicles: Line tension and transport. Biophys J 84:1734–1749

    Google Scholar 

  • Kolb JF, Kono S, Schoenbach KH (2006) Nanosecond pulsed electric field generators for the study of subcellular effects. Bioelectromagnetics 27:172–187

    Article  Google Scholar 

  • Kotnik T, Miklavcic D (2000) Analytical description of transmembrane voltage induced by electric field on spheroidal cells. Biophys J 79:670–679

    Google Scholar 

  • Kotulska M, Kubica K, Koronkiewicz S, Kalinowski S (2007) Modeling of the induction of lipid membrane electropermeabilization. Bioelectrochemistry 70:64–70

    Article  Google Scholar 

  • Krassowka W, Filev PD (2007) Modeling electroporation in a single cell. Biophys J 92:404–417

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1975) Electrodynamics of continuous media. Pergamon Press, Oxford

    Google Scholar 

  • Leontiadou H, Mark AE, Marrink SJ (2004) Molecular dynamics simulations of hydrophilic pores in lipid bilayers. Biophys J 86:2156–2164

    Article  Google Scholar 

  • Lin-Liu R, Adey WR, Poo MM (1984) Migration of cell surface concanavalin A receptors in pulsed electric fields. Biophys J 45:1211–1217

    Google Scholar 

  • Mahrour N, Pologea-Moraru R, Moisescu MG, Orlowski S, Levêque P, Mir LM (2005) In vitro increase of the fluid-phase endocytosis induced by pulsed radiofrequency electromagnetic fields: importance of the electric field component. Biochem Biophys Acta 1668:126–137

    Article  Google Scholar 

  • McLaughlin S, Poo MM (1981) The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J 34:85–93

    Google Scholar 

  • Miklavcic D, Semrov D, Mekid H, Mir LM (2000) A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy. Biochim Biophys Acta 1523:73–83

    Google Scholar 

  • Mir LM, Belehradek M, Domenge C, Orlowski S, Poddevin B, Belehradek J Jr, Schwaab G, Luboinski B, Paoletti C (1991a) Electrochemotherapy, a new antitumor treatment: first clinical trial. C R Acad Sci III 313:613–618

    Google Scholar 

  • Mir LM, Orlowski S, Belehradek J Jr, Paoletti C (1991b) Electrochemotherapy potentiation of antitumour effect of bleomycin by local electric pulses. Eur J Cancer 27:68–72

    Article  Google Scholar 

  • Neu JC, Krassowska W (2003) Modeling postshock evolution of large electropores. Phys Rev E 67:021915–021926

    Article  ADS  Google Scholar 

  • Neu JC, Smith KC, Krassowska W (2003) Electrical energy required to form large conducting pores. Bioelectrochem Bioenerg 60:107–114

    Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10:279–290

    Article  Google Scholar 

  • Neumann E, Sowers AE, Jordan CA (1989), Electroporation and electrofusion in cell biology. Plenum, New York

    Google Scholar 

  • Pastushenko VF, Chizmadzhev YA, Arekelyan VB (1979) Electric breakdown of bilayer membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation. Bioelectrochem Bioenerg 6:53–62

    Google Scholar 

  • Pavlin M, Pavselj, Miklavcic D (2002) Dependence of induced transmembrane potential on cll density, arrangement, and cell position inside a cell system. IEEE Trans Biomed Eng 49:605–612

    Article  Google Scholar 

  • Powell KT, Weaver JC (1986) Transient aqueous pores in bilayer membranes: a statistical theory. Bioelectrochem Bioenerg 15:211–227

    Article  Google Scholar 

  • Rols MP (2006) Electropermeabilization, a physical method for the delivery of therapeutic molecules into cells. Biochim Biophys Acta 1758:423–428

    Article  Google Scholar 

  • Sale AJ, Hamilton WA (1968) Effects of high electric fields on micro-organisms. 3. Lysis of erythrocytes and protoplasts. Biochim Biophys Acta 163:37–43

    Article  Google Scholar 

  • Sandre O, Moreaux L, Brochard-Wyart F (1999) Dynamics of transient pores in stretched membranes. Proc Nat Acad Sci USA 96:10591–10596

    Article  ADS  Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209

    Google Scholar 

  • Sens P, Isambert H (2002) Undulation instability of lipid membranes under an electric field. Phys Rev Lett 88:128102–128105

    Article  ADS  Google Scholar 

  • Smith KC, Neu JC, Krassowska W (2004) Model of creation and evolution of stable electropores for DNA delivery. Biophys J 86:2813–2826

    Google Scholar 

  • Sukharev SI, Klenchin VA, Serov SM, Chernomordik LV, Chizmadzhev Yu A (1992) Electroporation and electrophoretic DNA transfer into cells. The effect of DNA interaction with electropores. Biophys J 63:1320–1327

    Google Scholar 

  • Susil R, Semerov D, Miklavcic (1998) Electric field-induced transmembrane potential depends on cell density and organization. Electro-Magnetobiol 17:391–399

    Google Scholar 

  • Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4015–4053

    Article  Google Scholar 

  • Teissie J, Rols MP (1993) An experimental evaluation of the critical potential difference inducing cell membrane electropermeabilization. Biophys J 65:409–413

    Google Scholar 

  • Teissie J, Tsong TY (1980) Evidence of voltage-induced channel opening in Na/K ATPase of human erythrocyte membrane. J Membr Biol 55:133–140

    Article  Google Scholar 

  • Teissie J, Eynard N, Vernhes MC, Benichou A, Ganeva V, Galutzov B, Cabanes PA (2002) Recent biotechnological developments of electropulsation. A prospective review. Bioelectrochemistry 55:107–112

    Article  Google Scholar 

  • Teissie J, Golzio M, Rols MP (2005) Mechanisms of cell membrane electropermeabilization: a minireview of our present (lack of ?) knowledge. Biochim Biophys Acta 1724:270–280

    Google Scholar 

  • Tekle E, Oubrahim H, Dzekunov SM, Kolb JF, Schoenbach KH, Chock PB (2005) Selective field effects on intracellular vacuoles and vesicle membranes with nanosecond electric pulses. Biophys J 89:274–284

    Article  Google Scholar 

  • Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10

    Article  Google Scholar 

  • Tieleman DP (2006) Computer simulations of transport through membranes:passive diffusion, pores, channels and transporters. Clin Exp Pharm Phys 33:893–903

    Article  Google Scholar 

  • Tsuji K, Neumann E (1983) Conformational flexibility of membrane proteins in electric fields I. Ultraviolet absorbance and light scattering of bacteriorhodopsin in purple membranes. Biophys Chem 17:153–163

    Article  Google Scholar 

  • Vernier PT, Sun Y, Marcu L, Craft CM, Gundersen MA (2004) Nanoelectropulse-induced phosphatidylserine translocation. Biophys J 86:4040–4048

    Article  Google Scholar 

  • Vernier PT, Ziegler MJ, Sun Y, Gundersen MA, Tieleman DP (2006a) Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers-in cells and in silico. Phys Biol 3:233–247

    Article  ADS  Google Scholar 

  • Vernier PT, Sun Y, Gundersen MA (2006b) Nanoelectropulse-driven membrane perturbation and small molecule permeabilization. BMC Cell Biol 7:1–16

    Article  Google Scholar 

  • Weaver JC (1995) Electroporation theory. Concepts and mechanisms. Methods Mol Biol 55:3–28

    Google Scholar 

  • Wilhelm C, Winterhalter M, Zimmermann U, Benz R (1993) Kinetics of pore size during irreversible electric breakdown of lipid bilayer membranes. Biophys J 64:121–128

    Google Scholar 

  • Winterhalter M, Helfrich W (1987) Effect of voltage on pores in membranes. Phys Rev A 36:5874–5876

    Article  ADS  Google Scholar 

  • Wohlert J, den Otter WK, Edholm O, Briels WJ (2006) Free energy of a trans-membrane pore calculated from atomist molecular dynamics simulations. J Chem Phys 124:154905–154914

    Article  ADS  Google Scholar 

  • Yurong Q, Shengli L, Yuehua J, Taicheng Y, Jie W (2005) Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: a theoretical analysis. Bioelectrochemistry 67:57–65

    Article  Google Scholar 

  • Zhao M, Dick A, Forrester JV and McCaig CD (1999) Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol Biol 10:1259–1276

    Google Scholar 

  • Zhelev DV, Needham D (1993) Tension stablized pores in giant vesciles: determination of pore size and pore line tensions. Biophys Acta 1147:89–104

    Article  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14:881–899

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Association Française contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M.-P. Rols or C. Favard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escoffre, JM., Dean, D.S., Hubert, M. et al. Membrane perturbation by an external electric field: a mechanism to permit molecular uptake. Eur Biophys J 36, 973–983 (2007). https://doi.org/10.1007/s00249-007-0194-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-007-0194-7

Keywords

Navigation