Skip to main content
Log in

Impedance analysis of phosphatidylcholine membranes modified with valinomycin

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The effect of the ion carrier valinomycin on the electrochemical features of the phosphatidylcholine membrane was investigated by electrochemical impedance spectroscopy. Phosphatidylcholine and valinomycin were chosen for the study because they fulfil essential functions in lively organisms. The experimental impedance values obtained in the presence of different amounts of carrier, studied with several potassium ion concentrations, were used for the research ability of valinomycin to form a 1:1 potassium ion complex on the lipid bilayer/electrolyte solution interface. Based on derived mathematical equations, the heterogeneous equilibrium constant (K h), association rate constant of the complex (k R) and dissociation rate constant of the complex (k D) were calculated. The result of the investigation is the proposal of a new method for the determination of the parameters used to describe the chemical reaction at the interface between a carrier molecule from the membrane and a monovalent ion from the aqueous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso-Romanowski S, Gassa LM, Vilche JR (1995) An investigation by EIS of gramicidin channels in bilayer lipid membranes. Electrochim Acta 10:1561–1567

    Article  Google Scholar 

  • Awiszus R, Stark G (1988) A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes I 2,4-dichlorophenoxyacetic acid. Eur Biophys J 15:299–310

    PubMed  Google Scholar 

  • Benz R (1978) Alkali ion transport through lipid bilayer membranes mediated by enniatin A and B and beauvericin. J Membr Biol 43:367–394

    Article  PubMed  Google Scholar 

  • Benz R, Cros D (1978) Influence of sterols on ion transport through lipid bilayer membranes. Biochim Biophys Acta 506:265–280

    Article  PubMed  Google Scholar 

  • Benz R, Lauger P (1976) Kinetic analysis of carrier-mediated ion transport by the charge-pulse technique. J Membr Biol 27:171–191

    Article  PubMed  Google Scholar 

  • Benz R, Zimmermann U (1980) Pulse-length dependence of the electrical breakdown in lipid bilayer membranes. Biochim Biophys Acta 597:637–642

    Article  PubMed  Google Scholar 

  • Benz R, Stark G, Janko K, Lauger P (1973) Valinomycin-mediated ion transport through neutral lipid membranes: influence of hydrocarbon chain length and temperature. J Membr Biol 14:339–364

    Article  PubMed  Google Scholar 

  • Benz R, Frohlich O, Lauger O, Montal M (1975) Electrical capacity of black films and of lipid bilayers made from monolayers. Biochim Biophys Acta 374:323–334

    Google Scholar 

  • Benz R, Frohlich O, Lauger P (1977) Influence of membrane structure on the kinetics of carrier-mediated ion transport through lipid bilayers. Biochim Biophys Acta 464:465–481

    Article  PubMed  Google Scholar 

  • Boukamp BA (1988) Equivalent circuit (equivcrt.pas). University of Twente, Enschede

    Google Scholar 

  • Grell E, Funck T, Eggers F (1972) Proceedings of the symposium on molecular mechanisms of antibiotic action on protein in biosynthesis and membranes, Granada 1971. Elsevier, Amsterdam

  • Gritsch S, Nollert P, Jahnig F, Sackmann E (1998) Impedance spectroscopy of porin and gramicidin pores reconstituted into supported lipid bilayers on indium–tin oxide electrodes. Langmuir 14:3118–3125

    Article  Google Scholar 

  • Haynes DH (1972) The kinetics of potassium ion complexation by ionophores. Febs Lett 20:221–224

    Article  PubMed  Google Scholar 

  • Hladky SB (1979) Ion transport and displacement currents with membrane-bound carriers. J Membr Biol 46:213–237

    Article  PubMed  Google Scholar 

  • Kalinowski S, Figaszewski ZA (1995) A four-electrode potentiostat-galvanostat for studies of bilayer lipid membranes. Meas Sci Technol 6:1050–1055

    Article  ADS  Google Scholar 

  • Kemp G, Wenner CE (1972) Interaction of valinomycin with cations at the air-water interface. Biochim Biophys Acta 282:1–7

    Article  PubMed  Google Scholar 

  • Knoll W, Stark G (1975) An extended kinetic analysis of valinomycin-induced Rb-transport through monoglyceride membranes. J Membr Biol 25:249–270

    Article  PubMed  Google Scholar 

  • Lauger P (1972) Carrier-mediated ion transport. Science 178:24–30

    Article  PubMed  ADS  Google Scholar 

  • Lauger P (1980) Kinetic properties of ion carriers and channels. J Membr Biol 57:163–178

    Article  PubMed  Google Scholar 

  • Lauger P, Benz R, Stark G, Bamberg E, Jordan PC, Fahr A, Brock W (1981) Relaxation studies of ion transport systems in lipid bilayer membranes. Q Rev Biophys 14:513–598

    Article  PubMed  Google Scholar 

  • de Levie R (1979) Mathematical modeling of transport of lipid-soluble ions and ion-carrier complexes through lipid bilayer membranes. Adv Chem Phys 37:99–137

    Article  Google Scholar 

  • Naumann R, Waltz D, Schiller SM, Knoll W (2003) Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes. J Electroanal Chem 550–551:241–252

    Article  Google Scholar 

  • Naumowicz M, Figaszewski ZA (2003) Impedance analysis of phosphatidylcholine membranes modified with gramicidin D, Bioelectrochemistry 61:21–27

    Article  PubMed  Google Scholar 

  • Naumowicz M, Petelska AD, Figaszewski ZA (2003) Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol. Cell Mol Biol Lett 8:5–18

    PubMed  Google Scholar 

  • Naumowicz M, Petelska AD, Figaszewski ZA (2005) Impedance analysis of phosphatidylcholine-cholesterol system in bilayer lipid membranes. Electrochim Acta 50:2155–2161

    Article  Google Scholar 

  • Rangarajan SK, Seeling PF, de Levie R (1979) On the admittance of lipid bilayer membranes. J Electroanal Chem 100:33–62

    Article  Google Scholar 

  • Steinem C, Janshoff A, Ulrich WP, Sieber M, Galla HJ (1996) Impedance analysis of supported lipid bilayer membranes: a scrunity of different preparation techniques. Biochim Biophys Acta 1279:169–180

    Article  PubMed  Google Scholar 

  • Steinem C, Janshoff A, Wegener J, Ulrich WP, Willenbrink W, Sieber M, Galla H-J (1997) Impedance and shear wave resonance analysis of ligand-receptor interactions at functionalized surfaces and of cell monolayers. Biosens Bioelectron 12:787–808

    Article  PubMed  Google Scholar 

  • Steinem C, Janshoff A, Bruch K, Reihs K, Goossens J, Galla HJ (1998) Valinomycin-mediated transport of alkali cations through solid supported membranes. Bioelectrochem Bioenerg 45:17–26

    Article  Google Scholar 

  • Vetter KJ (1961) Elektrochemische kinetik. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zbigniew Figaszewski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumowicz, M., Kotynska, J., Petelska, A. et al. Impedance analysis of phosphatidylcholine membranes modified with valinomycin. Eur Biophys J 35, 239–246 (2006). https://doi.org/10.1007/s00249-005-0030-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0030-x

Keywords

Navigation