Skip to main content
Log in

Lateral pressure profiles in cholesterol–DPPC bilayers

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

By means of atomistic molecular dynamics simulations, we study cholesterol–DPPC (dipalmitoyl phosphatidylcholine) bilayers of different composition, from pure DPPC bilayers to a 1:1 mixture of DPPC and cholesterol. The lateral pressure profiles through the bilayers are computed and separated into contributions from the different components. We find that the pressure inside the bilayer changes qualitatively for cholesterol concentrations of about 20% or higher. The pressure profile in the inside of the bilayer then turns from a rather flat shape into an alternating sequence of regions with large positive and negative lateral pressure. The changes in the lateral pressure profile are so characteristic that specific interaction between cholesterol and molecules such as membrane proteins mediated solely via the lateral pressure profile might become possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anézo C, de Vries AH, Höltje HD, Tieleman DP, Marrink SJ (2003) Methodological issues in lipid bilayer simulations. J Phys Chem B 107:9424–9433

    Article  Google Scholar 

  • Ben-Shaul A (1995) Molecular theory of chain packing, elasticity and lipid-protein interaction in lipid bilayers. In: Lipowsky R, Sackmann E (eds) Handbook of biological physics, vol 1. Elsevier, Amsterdam, pp 359–401

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Di Nola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  ADS  Google Scholar 

  • Berger O, Edholm O, Jahnig F (1997) Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J 72:2002-2013. The force field description is available at http://moose.bio.ucalgary.ca/Downloads/files/lipid.itp

  • Bezrukov SM (2000) Functional consequences of lipid packing stress. Curr Opin Colloid Interface Sci 5:237–243

    Article  Google Scholar 

  • Bishop TC, Skeel RD, Schulten K (1997) Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. J Comput Chem 18:1785–1791

    Article  Google Scholar 

  • Cantor RS (1997a) The lateral pressure profile in membranes: a physical mechanism of general anesthesia. Biochemistry 36:2339–2344

    Article  PubMed  Google Scholar 

  • Cantor RS (1997b) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem 101:1723–1725

    Google Scholar 

  • Cantor RS (1999a) The influence of membrane lateral pressures on simple geometric models of protein conformational equilibria. Chem Phys Lipids 101:45–56

    Article  PubMed  Google Scholar 

  • Cantor RS (1999b) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76:2625–2639

    PubMed  Google Scholar 

  • de Kruijff B (1997) Lipids beyond the bilayer. Nature 386:129–130

    Article  PubMed  ADS  Google Scholar 

  • Eckenhoff RG (2001) Promiscuous ligands and attractive cavities: How do the inhaled anesthetics work? Mol Interv 1:258–268

    PubMed  Google Scholar 

  • Endress E, Heller H, Casalta H, Brown MF, Bayerl TM (2002) Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochemistry 41:13078–13086

    Article  PubMed  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8592

    Article  ADS  Google Scholar 

  • Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I (2004a) Impact of cholesterol on voids in phospholipid membranes. J Chem Phys 121:12676–12689

    Article  PubMed  ADS  Google Scholar 

  • Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I (2004b) Lessons of slicing membranes: Interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. Biophys J 87:1076–1091

    Article  PubMed  Google Scholar 

  • Frenkel, Smit (2002) Understanding molecular simulation: from algorithms to applications. Academic, San Diego

    Google Scholar 

  • Goetz R, Lipowsky R (1998) Computer simulations of bilayer membranes: Self-assembly and interfacial tension. J Chem Phys 108:7397–7409

    Article  ADS  Google Scholar 

  • Gullingsrud J, Schulten K (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86:3496–3509

    Article  PubMed  Google Scholar 

  • Gurtovenko AA, Patra M, Karttunen M, Vattulainen I (2004) Cationic DMPC/DMTAP lipid bilayers: Molecular dynamics study. Biophys J 86:3461–3472

    Article  PubMed  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  Google Scholar 

  • Harries D, Ben-Shaul A (1997) Conformational chain statistics in a model lipid bilayer: Comparison between mean field and Monte Carlo calculations. J Chem Phys 106:1609–1619

    Article  ADS  Google Scholar 

  • Heinz H, Paul W, Binder K (2004) Local pressure tensor in computer simulations of molecular systems. arXiv.org:cond-mat/0309014

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 18:1463–1472

    Article  Google Scholar 

  • Hofsäß C, Lindahl E, Edholm O (2003) Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J 84:2192–2206

    PubMed  Google Scholar 

  • Höltje M, Förster T, Brandt B, Engels T, von Rybinski W, Höltje HD (2001) Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol. Biochim Biophys Acta 1511:156–167. The topology file is available from http://www.gromacs.org/topologies/uploaded_molecules/cholesterol.tgz

    Google Scholar 

  • Killian JA, van Meer G (2001) The “double lives” of membrane lipids. EMBO Rep 21:91–95

    Article  Google Scholar 

  • Kinnunen PKJ (2000) Lipid bilayers as osmotic response elements. Cell Physiol Biochem 10:243–250

    Article  PubMed  Google Scholar 

  • Lee CC, Petersen NO (2004) The triple layer model: a different perspective on lipid bilayers. J Chin Chem Soc 51:1183–1191

    Google Scholar 

  • Lindahl E, Edholm O (2000) Spatial and energetic-entropic decomposition of surface tension in lipid bilayers from molecular dynamics simulations. J Chem Phys 113:3882–3893

    Article  ADS  Google Scholar 

  • Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    Google Scholar 

  • Marrink SJ, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98:4155–4168

    Article  Google Scholar 

  • Marrink SJ, Berendsen HJC (1996) Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J Phys Chem 100:16729–16738

    Article  Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta 1286:183–223

    PubMed  Google Scholar 

  • Marsh D (2002) Membrane water-penetration profiles from spin labels. Eur Biophys J 31:559–562

    Article  PubMed  Google Scholar 

  • McMullen DPW, McElhaney RN (1996) Physical studies cholesterol-phospholipid interactions. Curr Opin Colloid Interface Sci 1:83–90

    Article  Google Scholar 

  • Miyamoto S, Kollman PA (1992) SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models. J Comput Chem 13:952–962

    Article  Google Scholar 

  • Patra M, Karttunen M, Hyvönen M, Falck E, Lindqvist P, Vattulainen I (2003) Molecular dynamics simulations of lipid bilayers: major artifacts due to truncating electrostatic interactions. Biophys J 84:3636–3645

    PubMed  Google Scholar 

  • Patra M, Karttunen M, Hyvönen MT, Falck E, Vattulainen I (2004a) Lipid bilayers driven to a wrong lane in molecular dynamics simulations by subtle changes in long-range electrostatic interactions. J Phys Chem B 108:4485–4494

    Article  Google Scholar 

  • Patra M, Karttunen M, Hyvönen MT, Falck E, Vattulainen I (2004b) Long-range interactions in molecular simulations: accuracy and speed. arXiv.org:cond-mat/0410210

  • Rankin SE, Addona GH, Kloczewiak MA, Bugge B, Miller KW (1997) The cholesterol dependance of activation and fast desensitization of the nicotinic acetylcholine receptor. Biophys J 73:2446–2455

    PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J Comp Phys 23:327–341

    Article  ADS  Google Scholar 

  • Scheidt HA, Müller P, Herrmann A, Huster D (2003) The potential of fluorescent and spin-labeled steroid analogs to mimic natural cholesterol. J Biol Chem 278:45563–45569

    Article  PubMed  Google Scholar 

  • Shillcock JC, Lipowsky R (2002) Equilibrium structure and lateral stress distribution of amphiphilic bilayers from dissipative particle dynamics simulations. J Chem Phys 117:5048–5061

    Article  ADS  Google Scholar 

  • Siminovitch DJ, Ruocco MJ, Makriyannis A, Griffin RG (1987) The effect of cholesterol on lipid dynamics and packing in diether phosphatidylcholine bilayers. X-ray diffraction and 2H-NMR study. Biochim Biophys Acta 901:191–200

    Google Scholar 

  • Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290:1721–1726

    Article  ADS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of escheria coli - the MscL gene, protein and activities. Annu Rev Physiol 59:633–657

    Article  PubMed  Google Scholar 

  • Sutter M, Fiechter T, Imanidis G (2004) Correlation of membrane order and dynamics derived from time-resolved fluorescence measurements with solute permeability. J Pharmaceut Sci 93:2090–2107

    Article  Google Scholar 

  • Templer RH, Castle SJ, Curran AR, Rumbles G, Klug DR (1998) Sensing isothermal changes in the lateral pressure in model membranes using di-pyrenyl phosphatidylchlonine. Faraday Discuss 111:41–53

    Article  PubMed  Google Scholar 

  • Tieleman DP, Berendsen HJC (1996) Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J Chem Phys 105:4871–4880. The topology file is available from http://moose.bio.ucalgary.ca/Downloads/files/dppc.itp

  • Tieleman DP, Marrink SJ, Berendsen HJC (1997) A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. Biochim Biophys Acta 1331:235–270

    PubMed  Google Scholar 

  • Tironi IG, Sperb R, Smith PE, van Gunsteren WF (1995) A generalized reaction field method for molecular dynamics simulations. J Chem Phys 102:5451–5459

    Article  ADS  Google Scholar 

  • Tu K, Klein ML, Tobias DJ (1998) Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys J 75:2147–2156

    Article  PubMed  Google Scholar 

  • van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288

    Article  PubMed  Google Scholar 

  • Yeagle PL (1985) Cholesterol and the cell membrane. Biochim Biophys Acta 822:267–287

    PubMed  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge valuable discussions with Mikko Karttunen and the support from the European Union (MRTN-CT-2004-512331).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Patra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, M. Lateral pressure profiles in cholesterol–DPPC bilayers. Eur Biophys J 35, 79–88 (2005). https://doi.org/10.1007/s00249-005-0011-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-005-0011-0

Keywords

Navigation