Skip to main content

Advertisement

Log in

Effect of micellar charge on the conformation and dynamics of melittin

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Electrostatic interactions play a crucial role in modulating and stabilizing molecular interactions in membranes and membrane-mimetic systems such as micelles. We have monitored the change in the conformation and dynamics of the cationic hemolytic peptide melittin bound to micelles of various charge types, utilizing fluorescence and circular dichroism (CD) spectroscopy. The sole tryptophan of melittin displays a red-edge excitation shift (REES) of 3–6 nm when bound to anionic, nonionic, and zwitterionic micelles. This suggests that melittin is localized in a restricted environment, probably in the interfacial region of the micelles, and this region offers considerable restriction to the reorientational motion of the solvent dipoles around the excited state tryptophan in melittin. Further, the rotational mobility of melittin is considerably reduced in these micelles and is found to be dependent on the surface charge of micelles. Interestingly, our results show that melittin does not partition into cetyltrimethylammonium bromide (CTAB) micelles owing to electrostatic repulsion between melittin and CTAB micelles, both of which carry a positive charge. In addition, the fluorescence lifetime of melittin is modulated in micelles of different charge types. The lowest mean fluorescence lifetime is observed in the case of melittin bound to anionic sodium dodecyl sulfate (SDS) micelles. CD spectroscopy shows that micelles induce significant helicity to melittin, with maximum helicity being induced in the case of melittin bound to SDS micelles. Fluorescence quenching measurements using the neutral aqueous quencher acrylamide show differential accessibility of melittin in various types of micelles. Taken together, our results show that micellar surface charge can modulate the conformation and dynamics of melittin. These results could be relevant to understanding the role of the surface charge of membranes in the interaction of membrane-active, amphiphilic peptides with membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We have used the term maximum of fluorescence emission in a somewhat wider sense here. In every case, we have monitored the wavelength corresponding to the maximum fluorescence intensity, as well as the center of mass of the fluorescence emission. In most cases, both these methods yielded the same wavelength. In cases where minor discrepancies were found, the center of mass of the emission has been reported as the fluorescence maximum

Abbreviations

CD:

circular dichroism

CHAPS:

3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate

CMC:

critical micelle concentration

CTAB:

cetyltrimethylammonium bromide

DOPC:

dioleoyl-sn-glycero-3-phosphocholine

DPH:

1,6-diphenyl-1,3,5-hexatriene

REES:

red edge excitation shift

SDS:

sodium dodecyl sulfate

References

  • Argiolas A, Pisano JJ (1983) Facilitation of phospholipase A2 activity by mastoparans, a new class of mast cell degranulating peptides from wasp venom. J Biol Chem 258:13697–13702

    CAS  PubMed  Google Scholar 

  • Barnham KJ, Monks SA, Hinds MG, Azad AA, Norton RS (1997) Solution structure of a polypeptide from the N-terminus of the HIV protein Nef. Biochemistry 36:5970–5980

    Article  CAS  PubMed  Google Scholar 

  • Batenburg AM, van Esch JH, de Kruijff B (1988) Melittin-induced changes of the macroscopic structure of phosphatidylethanolamines. Biochemistry 27:2324–2331

    CAS  PubMed  Google Scholar 

  • Bechinger BJ (1997) Structure and functions of channel-forming peptides: magainins, cecropins, melittin and alamethicin. J Membr Biol 156:197–211

    CAS  PubMed  Google Scholar 

  • Beechem JM, Brand L (1985) Time-resolved fluorescence of proteins. Annu Rev Biochem 54:43–71

    Article  CAS  PubMed  Google Scholar 

  • Bello J, Bello HR, Granados E (1982) Conformation and aggregation of melittin: dependence of pH and concentration. Biochemistry 21:461–465

    CAS  PubMed  Google Scholar 

  • Benachir T, Lafleur M (1995) Study of vesicle leakage induced by melittin. Biochim Biophys Acta 1235:452–460

    Article  CAS  PubMed  Google Scholar 

  • Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phopshatidylglycerol/phosphatidylcholine membranes. Biochemistry 29:52–58

    CAS  PubMed  Google Scholar 

  • Bhairi SM (2001) Detergents: a guide to the properties and uses of detergents in biological systems. Calbiochem-Novabiochem, San Diego, USA

  • Blondelle SE, Houghten RA (1991a) Probing the relationships between the structure and hemolytic activity of melittin with a complete set of leucine substitution analogs. Pept Res 4:12–18

    CAS  PubMed  Google Scholar 

  • Blondelle SE, Houghten RA (1991b) Hemolytic and antimicrobial activities of twenty-four individual omission analogues of melittin. Biochemistry 30:4671–4678

    CAS  PubMed  Google Scholar 

  • Bradrick TD, Philippetis A, Georghiou S (1995) Stopped-flow fluorometric study of the interaction of melittin with phospholipid bilayers: importance of the physical state of the bilayer and the acyl chain length. Biophys J 69:1999–2010

    CAS  PubMed  Google Scholar 

  • Cajal Y, Jain MK (1997) Synergism between melittin and phospholipase A2 from bee venom: apparent activation by intervesicle exchange of phospholipids. Biochemistry 36:3882–3893

    Article  CAS  PubMed  Google Scholar 

  • Chandani B, Balasubramanian D (1986) Analysis of the interaction of membrane-active peptides with membranes: the case of melittin in surfactant assemblies. Biopolymers 25:1259–1272

    CAS  Google Scholar 

  • Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122:3–17

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Harikumar KG (1996) Dependence of critical micelle concentration of a zwitterionic detergent on ionic strength: implications in receptor solubilization. FEBS Lett 391:199–202

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, London E (1984) Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. Anal Biochem 139:408–412

    CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Rukmini R (1993) Restricted mobility of the sole tryptophan in membrane-bound melittin. FEBS Lett 335:341–344

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay A, Mukherjee S, Raghuraman H (2002) Reverse micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 106:13002–13009

    Article  CAS  Google Scholar 

  • Chen GC, Yang JT (1977) Two-point calibration of circular dichrometer with d-10-camphorsulfonic acid. Anal Lett 10:1195–1207

    CAS  Google Scholar 

  • De Jongh HHJ, Goormaghtigh E, Killian JA (1994) Analysis of circular dichroism spectra of oriented protein–lipid complexes: toward a general application. Biochemistry 33:14521–14528

    PubMed  Google Scholar 

  • Dempsey CE (1990) The action of melittin on membranes. Biochim Biophys Acta 1031:143–161

    CAS  PubMed  Google Scholar 

  • Dougherty DA (1996) Cation–pi interactions in chemistry and biology: a new view of benzene, Phe, Tyr, and Trp. Science 271:163–168

    CAS  PubMed  Google Scholar 

  • Eftink MR (1991a) In: Dewey TG (ed) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Press, New York, pp 1–41

  • Eftink MR (1991b) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2. Plenum Press, New York, pp 53–126

  • Franklin JC, Ellena JF, Jayasinghe S, Kelsh LP, Cafiso DS (1994) Structure of micelle-associated alamethicin from 1H NMR. Evidence for conformational heterogeneity in a voltage-gated peptide. Biochemistry 33:4036–4045

    CAS  PubMed  Google Scholar 

  • Gennis RB (1989) Biomembranes: molecular structure and function. Springer, Berlin Heidelberg New York, pp 151–160

  • Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively-charged phospholipids: implications in membrane organization and function. Biochemistry 36:14291–14305

    Article  CAS  PubMed  Google Scholar 

  • Golding C, O’Shea P (1995) The interactions of signal sequences with membranes. Biochem Soc Trans 23:971–976

    CAS  PubMed  Google Scholar 

  • Habermann E (1972) Bee and wasp venoms. Science 177:314–322

    CAS  PubMed  Google Scholar 

  • Habermann E, Kowallek H (1970) Modifications of amino group and tryptophan in melittin as an aid to recognition of structure-activity relationships. Hoppe-Seyler’s Z Physiol Chem 351:884–890

    Google Scholar 

  • Hincha DK, Crowe JH (1996) The lytic activity of the bee venom peptide melittin is strongly reduced by the presence of negatively charged phospholipids or chloroplast galactolipids in the membranes of phosphatidylcholine large unilamellar vesicles. Biochim Biophys Acta 1284:162–170

    Article  CAS  PubMed  Google Scholar 

  • Hjelmeland LM (1980) A nondenaturing zwitterionic detergent for membrane biochemistry: design and synthesis. Proc Natl Acad Sci USA 77:6368–6370

    CAS  PubMed  Google Scholar 

  • Ikeda S (1984) In: Mittal KL, Fendler EJ (eds) Surfactants in solution, vol 2. Plenum Press, New York, pp 825–840

  • Israelachvili JN, Marcelja S, Horn RG (1980) Physical principles of membrane organization. Q Rev Biophys 13:121–200

    PubMed  Google Scholar 

  • Kaiser ET, Kezdy FJ (1983) Secondary structures of proteins and peptides in amphiphilic environment. Proc Natl Acad Sci USA 80:1137–1143

    CAS  PubMed  Google Scholar 

  • Kelkar DA, Ghosh A, Chattopadhyay A (2003) Modulation of fluorophore environment in host membranes of varying charge. J Fluoresc 13:459–466

    Article  CAS  Google Scholar 

  • Killian AJ, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25:429–434

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Mosior M, Chung LA, Wu H, McLaughlin S (1991) Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J 60:135–148

    CAS  PubMed  Google Scholar 

  • Kirby EP, Steiner RF (1970) The influence of solvent and temperature upon the fluorescence of indole derivatives. J Phys Chem 74:4480–4490

    CAS  Google Scholar 

  • Kleinschmidt JH, Mahaney JE, Thomas DD, Marsh D (1997) Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study. Biophys J 72:767–778

    CAS  PubMed  Google Scholar 

  • Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York

  • Lam Y-H, Wassall SR, Morton CJ, Smith R, Separovic F (2001) Solid-state NMR structure determination of melittin in a lipid environment. Biophys J 81:2752–2761

    CAS  PubMed  Google Scholar 

  • Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  CAS  PubMed  Google Scholar 

  • Lee T-H, Mozsolits H, Aguilar M-I (2001) Measurement of the affinity of melittin for zwitterionic and anionic membranes using immobilized lipid biosensors. J Pept Res 58:464–476

    Article  CAS  PubMed  Google Scholar 

  • Lentz BR (1995) Are acidic lipid domains induced by extrinsic protein binding to membranes? Mol Membr Biol 12:65–67

    CAS  PubMed  Google Scholar 

  • Lenz VJ, Federwisch M, Gattner H-G, Brandenburg D, Hocker H, Hassiepen U, Wollmer A (1995) Structure and rotational dynamics of fluorescently labeled insulin in aqueous solution and at the amphiphile–water interface of reversed micelles. Biochemistry 34:6130–6141

    CAS  PubMed  Google Scholar 

  • MacKerell AD (1995) Molecular dynamics simulation analysis of a sodium dodecyl sulfate micelle in aqueous solution: decreased fluidity of the micelle hydrocarbon interior. J Phys Chem 99:1846–1855

    CAS  Google Scholar 

  • Maiti NC, Krishna MMG, Britto PJ, Periasamy N (1997) Fluorescence dynamics of dye probes in micelles. J Phys Chem B 101:11051–11060

    Article  CAS  Google Scholar 

  • McDowell L, Sanyal G, Prendergast FG (1985) Probable role of amphiphilicity in the binding of mastoparan to calmodulin. Biochemistry 24:2979–2984

    CAS  PubMed  Google Scholar 

  • McLaughlin S (1989) The electrostatic properties of membranes. Annu Rev Biophys Biophys Chem 18:113–136

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin S, Aderem A (1995) The myristoyl-electrostatic switch: a modulator of reversible protein–membrane interactions. Trends Biochem Sci 20:272–276

    Article  CAS  PubMed  Google Scholar 

  • Menger FM (1979) The structure of micelles. Acc Chem Res 12:111–117

    CAS  Google Scholar 

  • Monette M, Lafleur M (1995) Modulation of melittin-induced lysis by surface charge density of membranes. Biophys J 68:187–195

    CAS  PubMed  Google Scholar 

  • Morii HS, Honda S, Ohashi S, Uedaira H (1994) Alpha-helical assembly of biologically active peptides and designed helix bundle protein. Biopolymers 34:481–488

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Raghuraman H, Dasgupta S, Chattopadhyay A (2004) Organization and dynamics of N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-labeled lipids: a fluorescence approach. Chem Phys Lipids 127:91–101

    Article  CAS  PubMed  Google Scholar 

  • Naito A, Nagao T, Norisada K, Mizuno T, Tuzi S, Saitô H (2001) Conformation and dynamics of melittin bound to magnetically oriented lipid bilayers by solid-state 31P and 13C NMR spectroscopy. Biophys J 78:2405–2417

    Google Scholar 

  • Oren Z, Shai Y (1997) Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: structure–function study. Biochemistry 36:1826–1835

    Article  CAS  PubMed  Google Scholar 

  • Pandit A, Larsen OFA, van Stokkum IHM, van Grondelle R, Kraayenhof R, van Amerongen H (2003) Ultrafast polarized fluorescence measurements on monomeric and self-associated melittin. J Phys Chem B 107:3086–3090

    Article  CAS  Google Scholar 

  • Porte G, Appel J (1984) In: Mittal KL, Fendler EJ (eds) Surfactants in solution, vol 2. Plenum Press, New York, pp 805–823

  • Prendergast FG (1991) Time-resolved fluorescence techniques: methods and applications in biology. Curr Opin Struct Biol 1:1054–1059

    Article  CAS  Google Scholar 

  • Quay SC, Tronson LP (1983) Conformational studies of aqueous melittin: determination of ionization constants of lysine-21 and lysine-23 by reactivity toward 2,4,6-trinitrobenzenesulfonate. Biochemistry 22:700–707

    CAS  PubMed  Google Scholar 

  • Rabenstein M, Shin YK (1995) A peptide from the heptad repeat of human immunodeficiency virus gp41 shows both membrane binding and coiled-coil formation. Biochemistry 34:13390–13397

    CAS  PubMed  Google Scholar 

  • Raghuraman H, Chattopadhyay A (2003) Organization and dynamics of melittin in environments of graded hydration: a fluorescence approach. Langmuir 19:10332–10341

    Article  CAS  Google Scholar 

  • Raghuraman H, Kelkar DA, Chattopadhyay A (2003) Novel insights into membrane protein structure and dynamics utilizing the wavelength-selective fluorescence approach. Proc Indian Natl Sci Acad Sect A 69:25–35

    Google Scholar 

  • Raghuraman H, Pradhan SK, Chattopadhyay A (2004) Effect of urea on the organization and dynamics of Triton X-100 micelles: a fluorescence approach. J Phys Chem B 108:2489–2496

    Article  CAS  Google Scholar 

  • Rawat SS, Chattopadhyay A (1999) Structural transition in the micellar assembly: a fluorescence study. J Fluoresc 9:233–244

    Article  CAS  Google Scholar 

  • Rawat SS, Mukherjee S, Chattopadhyay A (1997) Micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 101:1922–1929

    Article  CAS  Google Scholar 

  • Resh MD (1994) Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76:411–413

    CAS  Google Scholar 

  • Saberwal G, Nagaraj R (1994) Cell-lytic and antibacterial peptides that act by perturbing the barrier function of membranes: facets of their conformational features, structure–function correlation and membrane-perturbing abilities. Biochim Biophys Acta 1197:109–131

    Article  CAS  PubMed  Google Scholar 

  • Sansom MSP (1991) The biophysics of peptide models of ion channels. Prog Biophys Mol Biol 55:139–235

    CAS  PubMed  Google Scholar 

  • Sarkar N, Datta A, Das S, Bhattacharyya K (1996) Solvation dynamics of coumarin 480 in micelles. J Phys Chem 100:15483–15486

    Article  CAS  Google Scholar 

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20:460–464

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (2001) Molecular recognition within the membrane milieu: implications for the structure and function of membrane proteins. J Membr Biol 182:91–104

    Article  CAS  PubMed  Google Scholar 

  • Sham SS, Shobana S, Townsley LE, Jordan JB, Fernandez JQ, Andersen OS, Greathouse DV, Hinton JF (2003) The structure, cation binding, transport and conductance of Gy15-gramicidin A incorporated into SDS micelles and PC/PG vesicles. Biochemistry 42:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Shobha J, Srinivas V, Balasubramanian D (1989) Differential modes of incorporation of probe molecules in micelles and in bilayer vesicles. J Phys Chem 93:17–20

    CAS  Google Scholar 

  • Sitaram N, Nagaraj R (1999) Interaction of antimicrobial peptides with biological and model membranes: structural and charge requirements for activity. Biochim Biophys Acta 1462:29–54

    CAS  PubMed  Google Scholar 

  • Tanford C (1978) The hydrophobic effect and the organization of living matter. Science 200:1012–1018

    CAS  PubMed  Google Scholar 

  • Terwilliger TC, Eisenberg D (1982) The structure of melittin. J Biol Chem 237:6016–6022

    Google Scholar 

  • von Heijne GJ (1992) Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J Mol Biol 225:487–494

    PubMed  Google Scholar 

  • Weaver AJ, Kemple MD, Brauner JW, Mendelsohn R, Prendergast FG (1992) Fluorescence, CD, attenuated total reflectance (ATR) FTIR, and 13C NMR characterization of the structure and dynamics of synthetic melittin and melittin analogues in lipid environments. Biochemistry 31:1301–1313

    CAS  PubMed  Google Scholar 

  • Weber G (1960) Fluorescence-polarization spectrum and electronic-energy transfer in tyrosine, tryptophan, and related compounds. Biochem J 75:335–345

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Y.S.S.V. Prasad and G.G. Kingi for technical help. This work was supported by the Council of Scientific and Industrial Research, Government of India. We thank members of our laboratory for critically reading the manuscript. H.R. thanks the University Grants Commission for the award of a Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghuraman, H., Chattopadhyay, A. Effect of micellar charge on the conformation and dynamics of melittin. Eur Biophys J 33, 611–622 (2004). https://doi.org/10.1007/s00249-004-0402-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-004-0402-7

Keywords

Navigation