Skip to main content
Log in

The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

In eukaryotic cells, localized actin polymerization is able to deform the plasma membrane and push the cell forward. Depolymerization of actin filaments and diffusion of actin monomers ensure the availability of monomers at sites of polymerization, and therefore these processes must play an active role in cellular actin dynamics. Here we reveal experimental evidence that actin gel growth can be limited by monomer diffusion, consistent with theoretical predictions. We study actin gels formed on beads coated with ActA (and ActA fragments), the bacterial factor responsible for actin-based movement of Listeria monocytogenes. We observe a saturation of gel thickness with increasing bead radius, the signature of diffusion control. Data analysis using an elastic model of actin gel growth gives an estimate of 2×10−8 cm−2 s−1 for the diffusion coefficient of actin monomers through the gel, ten times less than in buffer, and in agreement with literature values in bulk cytoskeleton, providing corroboration of our model. The depolymerization rate of actin filaments and the elastic modulus of the gel are also evaluated. Furthermore, we qualitatively examine the different actin gels produced when ActA fragments interact with either VASP or the Arp2/3 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1a–e
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abraham VC, Krishnamurthi V, Taylor DL, Lanni F (1999) The actin-based nanomachine at the leading edge of migrating cells. Biophys J 77:1721–1732

    CAS  PubMed  Google Scholar 

  • Bear JE, Svitkina TM, Krause M, Schafer DA, Loureiro JJ, Strasser GA, Maly IV, Chaga OY, Cooper JA, Borisy GG, Gertler FB (2002) Antagonism between Ena/VASP proteins and actin filament capping regulates fibroblast motility. Cell 109:509–521

    CAS  PubMed  Google Scholar 

  • Bernheim-Groswasser A, Wiesner S, Golsteyn RM, Carlier M-F, Sykes C (2002) The dynamics of actin-based motility depend on surface parameters. Nature 417:308–311

    Article  CAS  PubMed  Google Scholar 

  • Cameron LA, Footer MJ, Van Oudenaarden A, Theriot JA (1999) Motility of ActA protein-coated microspheres driven by actin polymerization. Proc Natl Acad Sci USA 96:4908–4913

    Article  CAS  PubMed  Google Scholar 

  • Cameron LA, Svitkina TM, Vignjevic D, Theriot JA, Borisy GG (2001) Dendritic organization of actin comet tails. Curr Biol 11:130–135

    Google Scholar 

  • Carlier M-F (1998) Control of actin dynamics. Curr Opin Cell Biol 10:45–51

    Article  CAS  PubMed  Google Scholar 

  • Dogterom M, Yurke B (1997) Measurement of the force–velocity relation for growing microtubules. Science 278:856–860

    Article  CAS  PubMed  Google Scholar 

  • Drenckhahn D, Pollard TD (1986) Elongation of actin filaments is a diffusion-limited reaction at the barbed end and is accelerated by inert macromolecules. J Biol Chem 261:12754–12758

    CAS  PubMed  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    CAS  Google Scholar 

  • Fradelizi J, Noireaux V, Plastino J, Menichi B, Louvard D, Sykes C, Golsteyn RM, Friederich E (2001) ActA and human zyxin harbour Arp2/3-independent actin-polymerization activity. Nat Cell Biol 3:699–707

    Article  CAS  PubMed  Google Scholar 

  • Geese M, Loureiro JJ, Bear JE, Wehland J, Gertler FB, Sechi AS (2002) Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell 13:2383–2396

    Article  CAS  PubMed  Google Scholar 

  • Gerbal F, Noireaux V, Sykes C, Jülicher F, Chaikin P, Ott A, Prost J, Golsteyn RM, Friederich E, Louvard D, Laurent V, Carlier M-F (1999) On the Listeria propulsion mechanism. Pramana – J Phys 53:155–170

  • Gerbal F, Laurent V, Ott A, Carlier M-F, Chaikin P, Prost J (2000) Measurement of the elasticity of the actin tail of Listeria monocytogenes. Eur Biophys J 29:134–140

    Article  CAS  PubMed  Google Scholar 

  • Golsteyn RM, Beckerle MC, Koay T, Friederich E (1997) Structural and functional similarities between the human cytoskeletal protein zyxin and the ActA protein of Listeria monocytogenes. J Cell Sci 110:1893–1906

    CAS  PubMed  Google Scholar 

  • Gordon D, Yang Y-Z, Korn E (1976) Polymerization of Acanthamoeba actin. Kinetics, thermodynamics and co-polymerization with muscle actin. J Biol Chem 251:7474–7479

    CAS  PubMed  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    CAS  PubMed  Google Scholar 

  • Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, Pantaloni D, Carlier M-F (1995) Flexibility of actin filaments derived from thermal fluctuations. J Biol Chem 270:11437–11444

    CAS  PubMed  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347:37–44

    CAS  PubMed  Google Scholar 

  • Käs J, Strey H, Tang JX, Finger D, Ezzell R, Sackmann E, Janmey PA (1996) F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophys J 70:609–625

    CAS  PubMed  Google Scholar 

  • Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531

    CAS  PubMed  Google Scholar 

  • Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica (Utrecht) 7:284–304

    Google Scholar 

  • Landau L, Lifchitz E (1976) Statistical physics, 3rd edn. Mir, Moscow

  • Lanni F, Ware BR (1984) Detection and characterization of actin monomers, oligomers, and filaments in solution by measurement of fluorescence photobleaching recovery. Biophys J 46:97–110

    CAS  PubMed  Google Scholar 

  • Lasa I, Gouin E, Goethals M, Vancompernolle K, David V, Vandekerckhove J, Cossart P (1997) Identification of two regions in the amino terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. EMBO J 16:1531–1540

    Article  CAS  PubMed  Google Scholar 

  • Laurent V, Carlier M-F (1998) Use of platelet extracts for actin-based motility of Listeria monocytogenes. In: Celis J (ed) Cell biology: a laboratory handbook, vol 2. Academic Press, Toronto, pp 359–365

  • Luby-Phelps K, Taylor DL, Lanni F (1986) Probing the structure of cytoplasm. J Cell Biol 102:2015–2022

    PubMed  Google Scholar 

  • Luby-Phelps K, Castle PE, Taylor DL, Lanni F (1987) Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci USA 84:4910–4913

    PubMed  Google Scholar 

  • Machesky LM (2002) Sharks’ teeth and dunes. Nature 417:494–495

    Article  CAS  PubMed  Google Scholar 

  • Machesky LM, Insall RH (1999) Signaling to actin dynamics. J Cell Biol 146:267–272

    CAS  PubMed  Google Scholar 

  • McGrath JL, Tardy Y, Dewey CF Jr, Meister JJ, Hartwig JH (1998) Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophys J 75:2070–2078

    CAS  PubMed  Google Scholar 

  • Mogilner A, Edelstein-Keshet L (2002) Regulation of actin dynamics in rapidly moving cells: a quantitative analysis. Biophys J 83:1237–1258

    CAS  PubMed  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186

    Article  CAS  PubMed  Google Scholar 

  • Noireaux V (2000) Etude d’un système biomimetique de Listeria. Université Paris XI, Paris

  • Noireaux V, Golsteyn RM, Friederich E, Prost J, Antony C, Louvard D, Sykes C (2000) Growing an actin gel on spherical surfaces. Biophys J 278:1643–1654

    Google Scholar 

  • Ölveczky BP, Verkman AS (1998) Monte Carlo analysis of obstructed diffusion in three dimensions: application to molecular diffusion in organelles. Biophys J 74:2722–2730

    PubMed  Google Scholar 

  • Pollard TD (1986) Rate constants for the reactions of ATP- and ADP-actin with the ends of actin filaments. J Cell Biol 103:2747–2754

    CAS  PubMed  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Article  CAS  PubMed  Google Scholar 

  • Reinhard M, Halbrügge M, Scheer U, Wiegand C, Jockusch BM, Walter U (1992) The 46/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts. EMBO J 11:2063–2070

    CAS  PubMed  Google Scholar 

  • Robinson RC, Turbedsky K, Kaiser DA, Marchand J-B, Higgs HN, Choe S, Pollard TD (2001) Crystal structure of Arp2/3 complex. Science 294:1679–1684

    Article  CAS  PubMed  Google Scholar 

  • Skoble J, Portnoy DA, Welch MD (2000) Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J Cell Biol 150:527–537

    Article  CAS  PubMed  Google Scholar 

  • Skoble J, Auerbuch V, Goley ED, Welch MD, Portnoy DA (2001) Pivotal role of VASP in Arp2/3 complex-mediated actin nucleation, actin branch-formation, and Listeria monocytogenes motility. J Cell Biol 155:89–100

    Article  CAS  PubMed  Google Scholar 

  • Spiros A, Edelstein-Keshet L (1998) Testing a model for the dynamics of actin structures with biological parameter values. Bull Math Biol 60:275–305

    Article  CAS  PubMed  Google Scholar 

  • Sutherland JD, Way M (2002) Looking over the edge: a new role for Ena/VASP proteins in lamellipodial dynamics. Dev Cell 2:692–694

    CAS  PubMed  Google Scholar 

  • Svitkina TM, Borisy GC (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026

    Article  CAS  PubMed  Google Scholar 

  • Theriot JA, Fung DC (1998) Use of Xenopus egg extracts for studies of actin-based motility, vol 2, 2nd edn. Academic Press, New York

  • Theriot JA, Mitchison TJ, Tilney LG, Portnoy DA (1992) The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357:257–260

    Article  CAS  PubMed  Google Scholar 

  • Wiesner S, Helfer E, Didry D, Ducouret G, Lafuma F, Carlier M-F, Pantaloni D (2003) A biomimetic motility assay provides insight into the mechanism of actin-based motility. J Cell Biol 160:387–398

    Article  CAS  PubMed  Google Scholar 

  • Zicha D, Dobbie IM, Holt MR, Monypenny J, Soong DYH, Gray C, Dunn GA (2003) Rapid actin transport during cell protrusion. Science 300:142–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Curie and CNRS fellowships (J.P.). We thank Vincent Noireaux for performing the treadmilling experiment shown in Fig. 3. We thank Marie-France Carlier for the gift of Arp2/3 and VASP, and Henry Higgs for the p41-Arc antibody.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Sykes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plastino, J., Lelidis, I., Prost, J. et al. The effect of diffusion, depolymerization and nucleation promoting factors on actin gel growth. Eur Biophys J 33, 310–320 (2004). https://doi.org/10.1007/s00249-003-0370-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0370-3

Keywords

Navigation