Skip to main content
Log in

The membrane-binding properties of a class A amphipathic peptide

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

The membrane-binding properties of a class A amphipathic peptide (18D) were investigated using two different immobilized model membrane systems. The first system involved the use of surface plasmon resonance (SPR) to study the binding of 18D to dimyristylphosphatidylcholine (DMPC) and dimyristylphosphatidylglycerol (DMPG), which allowed peptide binding to be monitored in real time. The SPR experiments indicated stronger binding of 18D to DMPG than DMPC, which kinetic analysis revealed was due to a faster on-rate. The second model membrane system involved immobilized membrane chromatography in which the binding of 18D to either DMPC or DMPG monolayers covalently linked to silica particles was analysed by elution chromatography. Stronger binding affinity of 18D was also obtained with the negatively charged phosphatidylglycerol (PG) monolayer compared to the phosphatidylcholine (PC) monolayer, which was consistent with the SPR results. Non-linear binding behaviour of 18D to the immobilized lipid monolayers was also observed, which suggests that the peptide undergoes conformational and orientational changes upon binding to the immobilized PC and PG ligands. Significant band broadening was also observed on both monolayers, with larger bandwidths obtained on the PC surface, indicating slower binding and orientation kinetics with the zwitterionic surface. The dependence of logk' on the percentage of methanol also demonstrated a bimodal interaction whereby hydrophobic forces predominated at higher temperatures and methanol concentrations, while at lower temperatures, electrostatic and other polar forces also made a contribution to the affinity of the peptides for the lipid monolayer particularly. Overall, these results demonstrate the complementary use of these two lipid biosensors which allows the role of hydrophobic and electrostatic forces in peptide–membrane interactions to be studied and insight gained into the kinetic factors associated with these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Beschiaschvili G, Seelig J (1990) Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes. Biochemistry 29:52–58

    CAS  PubMed  Google Scholar 

  • Clayton AH, Sawyer WH (1999) The structure and orientation of class-A amphipathic peptides on a phospholipid bilayer surface. Eur Biophys J 28:133–141

    Google Scholar 

  • Clayton AH, Sawyer WH (2000a) Oriented circular dichroism of a class A amphipathic helix in aligned phospholipid multilayers. Biochim Biophys Acta 1467:124–130

    Article  CAS  PubMed  Google Scholar 

  • Clayton AH, Sawyer WH (2000b) Site-specific tryptophan dynamics in class A amphipathic helical peptides at a phospholipid bilayer interface. Biophys J 79:1066–1073

    CAS  PubMed  Google Scholar 

  • Clayton AH, Vultureanu AG, Sawyer WH (2003) Unfolding of class-A amphipathic peptides on a lipid surface. Biochemistry 42:(in press)

  • Corijn J, Deleys R, Labeur C, Vanloo B, Lins L, Brasseur R, Baert J, Ruysschaert JM, Rosseneu M (1993) Synthetic model peptides for apolipoproteins. II. Characterization of the discoidal complexes generated between phospholipids and synthetic model peptides for apolipoproteins. Biochim Biophys Acta 1170:8–16

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg D, Weiss RM, Terwilliger TC (1982) The helical hydrophobic moment: a measure of the amphiphilicity of a helix. Nature 299:371–374

    CAS  PubMed  Google Scholar 

  • Epand RM, Shai Y, Segrest JP, Anantharamaiah GM (1995) Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers 37:319–338

    CAS  PubMed  Google Scholar 

  • Gazzara JA, Phillips MC, Lund-Katz S, Palgunachari MN, Segrest JP, Anantharamaiah GM, Snow JW (1997) Interaction of class A amphipathic helical peptides with phospholipid unilamellar vesicles. J Lipid Res 38:2134–2146

    CAS  PubMed  Google Scholar 

  • Heyse S, Stora T, Schmid E, Lakey JH, Vogel H (1998) Emerging techniques for investigating molecular interactions at lipid membranes. Biochim Biophys Acta 1376:319–338

    CAS  PubMed  Google Scholar 

  • Karlsson R, Falt A (1997) Experimental design for kinetic analysis of protein-protein interactions with surface plasmon resonance biosensors. J Immunol Methods 200:121–133

    Article  CAS  PubMed  Google Scholar 

  • Koynova R, Caffrey M (1998) Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta 1376:91–145

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Mozsolits H, Aguilar MI (2001) Measurement of the affinity of melittin for zwitterionic and anionic membranes using immobilized lipid biosensors. J Pept Res 58:464–476

    Article  CAS  PubMed  Google Scholar 

  • Lee T-Z, Rivett D, Werkmeister J, Hewish D, Aguilar MI (1999) The interaction of amphipathic peptides with an immobilised model membrane. Lett Pept Sci 6:371–380

    Article  CAS  Google Scholar 

  • Lund-Katz S, Phillips MC, Mishra VK, Segrest JP, Anantharamaiah GM (1995) Microenvironments of basic amino acids in amphipathic alpha-helices bound to phospholipid: 13C NMR studies using selectively labeled peptides. Biochemistry 34:9219–9226

    CAS  PubMed  Google Scholar 

  • Mishra VK, Palgunachari MN (1996) Interaction of model class A1, class A2, and class Y amphipathic helical peptides with membranes. Biochemistry 35:11210–11220

    Article  CAS  PubMed  Google Scholar 

  • Morton TA, Myszka DG, Chaiken IM (1995) Interpreting complex binding kinetics from optical biosensors: a comparison of analysis by linearization, the integrated rate equation, and numerical integration. Anal Biochem 227:176–185

    Article  CAS  PubMed  Google Scholar 

  • Mozsolits H, Aguilar MI (2002) Surface plasmon resonance spectroscopy: an emerging tool for the study of peptide-membrane interactions. Biopolymers 66:3–18

    Article  CAS  PubMed  Google Scholar 

  • Mozsolits H, Lee TH, Wirth HJ, Perlmutter P, Aguilar MI (1999) The interaction of bioactive peptides with an immobilized phosphatidylcholine monolayer. Biophys J 77:1428–1444

    CAS  PubMed  Google Scholar 

  • Mozsolits H, Wirth HJ, Werkmeister J, Aguilar MI (2001) Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance. Biochim Biophys Acta 1512:64–76

    CAS  PubMed  Google Scholar 

  • Mozsolits H, Unabia S, Ahmad A, Morton CJ, Thomas WG, Aguilar MI (2002) Electrostatic and hydrophobic forces tether the proximal region of the angiotensin II receptor (AT1A) carboxyl terminus to anionic lipids. Biochemistry 41:7830–7840

    Article  CAS  PubMed  Google Scholar 

  • Niemz A, Tirrell DA (2001) Self-association and membrane-binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 123:7407–7413

    Article  CAS  PubMed  Google Scholar 

  • Polozov IV, Polozova AI, Mishra VK, Anantharamaiah GM, Segrest JP, Epand RM (1998) Studies of kinetics and equilibrium membrane binding of class A and class L model amphipathic peptides. Biochim Biophys Acta 1368:343–354

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G, Beschiaschvili G (1989) Thermodynamic and kinetic studies on the association of melittin with a phospholipid bilayer. Biochim Biophys Acta 979:82–90

    Article  CAS  PubMed  Google Scholar 

  • Segrest JP, Jackson RL, Morrisett JD, Gotto AM Jr (1974) A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett 38:247–258

    Article  CAS  PubMed  Google Scholar 

  • Segrest JP, De Loof H, Dohlman JG, Brouillette CG, Anantharamaiah GM (1990) Amphipathic helix motif: classes and properties. Proteins 8:103–117

    PubMed  Google Scholar 

  • Segrest JP, Jones MK, De Loof H, Brouillette CG, Venkatachalapathi YV, Anantharamaiah GM (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33:141–166

    CAS  PubMed  Google Scholar 

  • Shai Y (1999) Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta 1462:55–70

    CAS  PubMed  Google Scholar 

  • Spuhler P, Anantharamaiah GM, Segrest JP, Seelig J (1994) Binding of apolipoprotein A-I model peptides to lipid bilayers. Measurement of binding isotherms and peptide-lipid headgroup interactions. J Biol Chem 269:23904–23910

    CAS  PubMed  Google Scholar 

  • Subasinghe S, Unabia S, Barrow CJ, Mok SS, Aguilar MI, Small DH (2003) Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes. J Neurochem 84:471–479

    Article  CAS  PubMed  Google Scholar 

  • Tytler EM, Segrest JP, Epand RM, Nie SQ, Epand RF, Mishra VK, Venkatachalapathi YV, Anantharamaiah GM (1993) Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem 268:22112–22118

    CAS  PubMed  Google Scholar 

  • Venkatachalapathi YV, Phillips MC, Epand RM, Epand RF, Tytler EM, Segrest JP, Anantharamaiah GM (1993) Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins 15:349–359

    CAS  PubMed  Google Scholar 

  • Wimley WC, White SH (1993) Quantitation of electrostatic and hydrophobic membrane interactions by equilibrium dialysis and reverse-phase HPLC. Anal Biochem 213:213–217

    Article  CAS  PubMed  Google Scholar 

  • Zhelev DV, Stoicheva N, Scherrer P, Needham D (2001) Interaction of synthetic ha2 influenza fusion peptide analog with model membranes. Biophys J 81:285–304

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-I. Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mozsolits, H., Lee, TH., Clayton, A.H.A. et al. The membrane-binding properties of a class A amphipathic peptide. Eur Biophys J 33, 98–108 (2004). https://doi.org/10.1007/s00249-003-0332-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0332-9

Keywords

Navigation