Skip to main content
Log in

Conformational equilibria and dynamics of cytochrome c induced by binding of sodium dodecyl sulfate monomers and micelles

  • Article
  • Published:
European Biophysics Journal Aims and scope Submit manuscript

Abstract

Circular dichroism, nuclear magnetic resonance, electron paramagnetic resonance, UV-vis absorption, and resonance Raman (RR) spectroscopic techniques were employed to study protein and heme structural changes of cytochrome c (Cyt-c) induced by sodium dodecyl sulfate (SDS) monomers and micelles via hydrophobic and electrostatic interactions, respectively. Both modes of interactions cause the transition to the conformational state B2, which is implicated to be involved in the physiological processes of Cyt-c. At sub-micellar concentrations of SDS, specific binding of only ca. three SDS monomers, which is likely to occur at the hydrophobic peptide segment 81–85, is sufficient for a complete conversion to a B2 state in which Met80 is replaced by His33 (His26). These heme pocket structural changes are not linked to secondary structure changes of the protein brought about by nonspecific binding of SDS monomers in different regions of the protein. Upon binding of micelles, B2 high-spin species can also be stabilized by electrostatic interactions. In addition, the micelle interaction domain is located on the front surface of Cyt-c, which includes a ring-like arrangement of lysine residues appropriate for binding one micelle. According to freeze-quench RR and stopped-flow experiments, state B2 is formed on the long millisecond timescale and reveals a complex dependence on the SDS concentration that can be interpreted in terms of competitive binding of monomers and micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

References

  • Alden RG, Crawford BA, Doolen R, Ondrias MR, Shelnutt JA (1989) Ruffling of nickel(II)-octaethlporphyrin in solution. J Am Chem Soc 111:2070–2072

    CAS  Google Scholar 

  • Ali V, Prakash K, Kulkarni S, Ahmad A, Madhusudan KP, Bhakuni V (1999) 8-Anilino-1-naphthalenesulfonic acid (ANS) induces folding of acid unfolded cytochrome c to molten globule state as a result of electrostatic interactions. Biochemistry 38:13635–13642

    Article  CAS  PubMed  Google Scholar 

  • Bushnell GW, Louie GV, Brayer GD (1990) High-resolution three-dimensional structure of horse heart cytochrome c. J Mol Biol 214:585–595

    CAS  PubMed  Google Scholar 

  • Cartling B (1983) Intermediate and stable redox states of cytochrome c studied by low-temperature resonance Raman spectroscopy. Biophys J 43:191–205

    CAS  PubMed  Google Scholar 

  • Colón W, Wakem LP, Sherman F, Roder H (1997) Identification of the predominant non-native histidine ligand in unfolded cytochrome c. Biochemistry 36:12535–12541

    PubMed  Google Scholar 

  • Das TK, Mazumdar S, Mitra S (1998) Characterization of a partially unfolded structure of cytochrome c induced by sodium dodecyl sulphate and the kinetics of its refolding. Eur J Biochem 254:662–670

    Article  CAS  PubMed  Google Scholar 

  • Davies AM, Guillemette JG, Smith M, Greenwood C, Thurgood AGP, Mauk AG, Moore GR (1993) Redesign of the interior hydrophilic region of mitochondrial cytochrome c by site-directed mutagenesis. Biochemistry 32:5431–5435

    CAS  PubMed  Google Scholar 

  • de Jongh HHJ, Killian JA, de Kruijff B (1992) A water-lipid interface induces a highly dynamic folded state in apocytochrome c and cytochrome c, which may represent a common folding intermediate. Biochemistry 31:1636–1643

    PubMed  Google Scholar 

  • Di Paola M, Cocco T, Lorusso M (2000) Arachidonic acid causes cytochrome c release from heart mitochondria. Biochem Biophys Res Commun 277:128–133

    Article  PubMed  Google Scholar 

  • Döpner S, Hildebrandt P, Mauk AG, Lenk H, Stempfle W (1996) Analysis of vibrational spectra of multicomponent systems. Application to pH-dependent resonance Raman spectra of ferricytochrome c. Spectrochim Acta, Part A 52:573–584

    Google Scholar 

  • Döpner S, Hildebrandt P, Rosell FI, Mauk AG, von Walter M, Buse G, Soulimane T (1999) The structural and functional role of lysine residues in the binding domain of cytochrome c in the electron transfer to cytochrome c oxidase. Eur J Biochem 261:379–391

    Article  PubMed  Google Scholar 

  • Elöve GA, Bhuyan AK, Roder H (1994) Kinetic mechanism of cytochrome c folding: involvement of the heme and its ligands. Biochemistry 33:6925–6935

    CAS  PubMed  Google Scholar 

  • Emerson MF, Holtzer A (1967) On the ionic strength dependence of micelle number. J Phys Chem 71:1898–1907

    CAS  PubMed  Google Scholar 

  • Ferguson-Miller S, Babcock GT (1996) Heme/copper terminal oxidases. Chem Rev 96:2889–2907

    CAS  PubMed  Google Scholar 

  • Gębicka L, Gębicki JL (1999) Kinetic studies on the interaction of ferricytochrome c with anionic surfactants. J Protein Chem 18:165–172

    Article  PubMed  Google Scholar 

  • Geren LM, Beasley JR, Fine BR, Saunders AJ, Hibdon S, Pielak GJ, Durham B, Millett F (1995) Design of a ruthenium cytochrome c derivative to measure electron transfer to the initial acceptor in cytochrome c oxidase. J Biol Chem 270:2466–2472

    Article  CAS  PubMed  Google Scholar 

  • Goto Y, Calciano LJ, Fink AL (1990) Acid-induced folding of proteins. Proc Natl Acad Sci USA 87:573–577

    CAS  PubMed  Google Scholar 

  • Hancock JT, Desikan R, Neill SJ (2001) Does the redox status of cytochrome c act as a fail-safe mechanism in the regulation of programmed cell death? Free Radical Biol Med 31:697–703

    Google Scholar 

  • Heimburg T, Marsh D (1993) Investigation of secondary and tertiary structural changes of cytochrome c in complexes with anionic lipids using amide hydrogen exchange measurements: an FTIR study. Biophys J 65:2408–2417

    CAS  PubMed  Google Scholar 

  • Hildebrandt P, Stockburger M (1989a) Cytochrome c at charged interfaces. 1. Conformational and redox equilibria at the electrode electrolyte interface probed by surface-enhanced resonance Raman spectroscopy. Biochemistry 28:6710–6721

    CAS  PubMed  Google Scholar 

  • Hildebrandt P, Stockburger M (1989b) Cytochrome c at charged interfaces. 2. Complexes with negatively charged macromolecular systems studied by resonance Raman spectroscopy. Biochemistry 28:6722–6728

    CAS  PubMed  Google Scholar 

  • Hildebrandt P, Heimburg T, Marsh D (1990) Quantitative conformational analysis of cytochrome c bound to phospholipid vesicles studied by resonance Raman spectroscopy. Eur Biophys J 18:193–201

    CAS  PubMed  Google Scholar 

  • Hiramatsu K, Yang JT (1983) Cooperative binding of hexadecyltrimethylammonium chloride and sodium dodecyl sulfate to cytochrome c and the resultant change in protein conformation. Biochim Biophys Acta 743:106–114

    Article  CAS  PubMed  Google Scholar 

  • Jemmerson R, Liu J, Hausauer D, Lam KP, Mondino A, Nelson RD (1999) A conformational change in cytochrome c of apoptotic and necrotic cells is detected by monoclonal antibody binding and mimicked by association of the native antigen with synthetic phospholipid vesicles. Biochemistry 38:3599–3609

    CAS  PubMed  Google Scholar 

  • Kitagawa T, Ozaki Y (1987) Infrared and Raman spectra of metalloporphyrins. Struct Bonding 64:73–114

    Google Scholar 

  • Koppenol WH, Rush JD, Mills JD, Margoliash E (1991) The dipole moment of cytochrome c. Mol Biol Evol 8:545–558

    CAS  PubMed  Google Scholar 

  • Makinen MW, Churg AK (1983) Structural and analytical aspects of the electronic spectra of hemeproteins. In: Lever ABP, Gray HB (eds) Iron porphyrins. Addison-Wesley, Reading, Mass., USA, pp 141–219

  • Malatesta F, Antonini G, Sarti P, Brunori M (1995) Structure and function of a molecular machine: cytochrome c oxidase. Biophys Chem 54:1–33

    Article  CAS  PubMed  Google Scholar 

  • Muga A, Mantsch HH, Surewicz WK (1991) Membrane binding induces destabilization of cytochrome c structure. Biochemistry 30:7219–7224

    CAS  PubMed  Google Scholar 

  • Murgida DH, Hildebrandt P (2001) Heterogeneous electron transfer of cytochrome c on coated silver electrodes. Electric field effects on structure and redox potentials. J Phys Chem B 105:1578–1586

    Article  CAS  Google Scholar 

  • Oellerich S (2001) PhD thesis. MPI für Strahlenchemie Mülheim/University of Essen

  • Oellerich S, Bill E, Hildebrandt P (2000) Freeze-quench resonance Raman and electron paramagnetic resonance spectroscopy for studying enzyme kinetics: application to azide binding to myoglobin. Appl Spectrosc 54:1480–1484

    CAS  Google Scholar 

  • Oellerich S, Wackerbarth H, Hildebrandt P (2002) Spectroscopic characterization of non-native conformational states of cytochrome c. J Phys Chem B 106:6566–6580

    Article  CAS  Google Scholar 

  • Otzen DE, Oliveberg M (2002) Burst phase expansion of the native protein prior to global unfolding in SDS. J Mol Biol 315:1231–1240

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathi N, Hansen C, Yamaguchi S, Spiro TG (1987) Metalloporphyrin core size resonance Raman marker bands revisited: implications for the interpretation of hemoglobin photoproduct Raman frequencies. J Am Chem Soc 109:3865–3871

    CAS  Google Scholar 

  • Pettigrew GW, Moore GR (1987) Cytochromes c: biological aspects. Springer, Berlin Heidelberg New York

  • Pinheiro TJT (1994), The interaction of horse heart cytochrome c with phospholipid bilayers: structural and dynamic effects. Biochimie 76:489–500

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro TJT, Elöve GA, Watts A, Roder H (1997) Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochemistry 36:13122–13132

    Article  CAS  PubMed  Google Scholar 

  • Purring-Koch C, McLendon G (2000) Cytochrome c binding to Apaf-1: the effects of dATP and ionic strength. Proc Natl Acad Sci USA 97:11923–11931

    Article  Google Scholar 

  • Purring C, Zou H, Wang X, McLendon G (1999) Stoichiometry, free energy, and kinetic aspects of cytochrome c: Apaf-1 binding in apoptosis. J Am Chem Soc 121:7435–7436

    Article  CAS  Google Scholar 

  • Reynolds JA, Tanford C (1970) Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes. Proc Natl Acad Sci USA 66:1002–1007

    CAS  PubMed  Google Scholar 

  • Rivas L, Murgida DH, Hildebrandt P (2002) Conformational and redox equilibria and dynamics of cytochrome c immobilized on electrodes via hydrophobic interactions. J Phys Chem B 106:4823–4830

    Article  CAS  Google Scholar 

  • Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. J Biol Chem 274:38051–38060

    Article  CAS  PubMed  Google Scholar 

  • Sanghera N, Pinheiro TJT (2000) Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles. Protein Sci 9:1194–1202

    CAS  PubMed  Google Scholar 

  • Scott RA, Mauk AG (1996) Cytochrome c: a multidisciplinary approach. University Science Books, Sausalito, Calif., USA

  • Shi YG (2001) A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 8: 394–401

    Article  CAS  PubMed  Google Scholar 

  • Smith WE (1993) Surface enhanced resonance Raman spectroscopy. Methods Enzymol 226C:482–495

    Google Scholar 

  • Soulimane T, Buse G (1995) Integral cytochrome c oxidase: preparation and progress towards a 3-dimensional crystallization. Eur J Biochem 227:588–595

    CAS  PubMed  Google Scholar 

  • Spooner PJR, Watts A (1991) Reversible unfolding of cytochrome c upon interaction with cardiolipin bilayers. 1. Evidence from deuterium NMR measurements. Biochemistry 30:3871–3879

    CAS  PubMed  Google Scholar 

  • Stewart JM, Blakely JA, Johnson MD (2000) The interaction of ferrocytochrome c with long-chain fatty acids and their CoA and carnitine esters. Biochem Cell Biol 78:675–681

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Takahashi K, Batra PP (1985) Kinetic aspects of the interaction of horse heart cytochrome c with sodium dodecyl sulfate. Arch Biochem Biophys 236:411–417

    CAS  PubMed  Google Scholar 

  • Wackerbarth H, Klar U, Gunther W, Hildebrandt P (1999) Novel time-resolved surface-enhanced (resonance) Raman spectroscopic technique for studying the dynamics of interfacial processes: application to the electron transfer reaction of cytochrome c at a silver electrode. Appl Spectrosc 53:283–291

    CAS  Google Scholar 

  • Wackerbarth H, Murgida DH, Oellerich S, Döpner S, Rivas L, Hildebrandt P (2001) Dynamics and mechanism of the electron transfer process of cytochrome c probed by resonance Raman and surface enhanced resonance Raman spectroscopy. J Mol Struct 563:51–59

    Article  Google Scholar 

  • Witt H, Malatesta F, Nicoletti F, Brunori M, Ludwig B (1998) Tryptophan 121 of subunit II is the electron entry site to cytochrome-c oxidase in Paracoccus denitrificans: involvement of a hydrophobic patch in the docking reaction. Eur J Biochem 251:367–373

    CAS  PubMed  Google Scholar 

  • Yeh SR, Takahashi S, Fan BC, Rousseau DL (1997) Ligand exchange during cytochrome c folding. Nat Struct Biol 4:51–56

    PubMed  Google Scholar 

  • Yeh SR, Han SW, Rousseau DL (1998) Cytochrome c folding and unfolding: a biphasic mechanism. Acc Chem Res 31:727–736

    Article  CAS  Google Scholar 

  • Yoshimura T (1988) A change in the heme stereochemistry of cytochrome c upon addition of sodium dodecylsulfate: electron paramagnetic resonance and electronic absorption spectral study. Arch Biochem Biophys 264:450–461

    CAS  PubMed  Google Scholar 

  • Yu TN, Wang XD, Purring-Koch C, Wei Y, McLendon GL (2001) A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1. J Biol Chem 276:13084–13088

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. E. Bill, Prof. N. Metzler-Nolte, and Dr. R. Schumacher for kind support in EPR, NMR, and stopped-flow experiments, respectively. Technical assistance by B. Deckers is gratefully acknowledged. The work was supported by the Volkswagen-Stiftung (I 72826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Hildebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oellerich, S., Wackerbarth, H. & Hildebrandt, P. Conformational equilibria and dynamics of cytochrome c induced by binding of sodium dodecyl sulfate monomers and micelles. Eur Biophys J 32, 599–613 (2003). https://doi.org/10.1007/s00249-003-0306-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00249-003-0306-y

Keywords

Navigation