Skip to main content
Log in

Multiscale Spatial Variability and Stability in the Structure and Diversity of Bacterial Communities Associated with the Kelp Eisenia cokeri in Peru

  • Research
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ecological communities are structured by a range of processes that operate over a range of spatial scales. While our understanding of such biodiversity patterns in macro-communities is well studied, our understanding at the microbial level is still lacking. Bacteria can be free living or associated with host eukaryotes, forming part of a wider “microbiome,” which is fundamental for host performance and health. For habitat forming foundation-species, host-bacteria relationships likely play disproportionate roles in mediating processes for the wider ecosystem. Here, we describe host-bacteria communities across multiple spatial scales (i.e., from 10s of m to 100s of km) in the understudied kelp, Eisenia cokeri, in Peru. We found that E. cokeri supports a distinct bacterial community compared to the surrounding seawater, but the structure of these communities varied markedly at the regional (~480 km), site (1–10 km), and individual (10s of m) scale. The marked regional-scale differences we observed may be driven by a range of processes, including temperature, upwelling intensity, or regional connectivity patterns. However, despite this variability, we observed consistency in the form of a persistent core community at the genus level. Here, the genera Arenicella, Blastopirellula, Granulosicoccus, and Litorimonas were found in >80% of samples and comprised ~53% of total sample abundance. These genera have been documented within bacterial communities associated with kelps and other seaweed species from around the world and may be important for host function and wider ecosystem health in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

ASV table and metadata are available at (https://doi.org/10.6084/m9.figshare.22182457.v1).

References

  1. Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Change 2:686–690

    Google Scholar 

  2. Waldock C, Stuart-Smith RD, Edgar GJ, Bird TJ, Bates AE (2019) The shape of abundance distributions across temperature gradients in reef fishes. Ecol Lett 22:685–696

    PubMed  PubMed Central  Google Scholar 

  3. Morin PJ (2009) Community ecology. John Wiley & Sons

    Google Scholar 

  4. McGill BJ (2010) Matters of scale. Science 328:575–576

    CAS  PubMed  Google Scholar 

  5. Nyholm SV, Graf J (2012) Knowing your friends: invertebrate innate immunity fosters beneficial bacterial symbioses. Nat Rev Microbiol 10:815–827

    CAS  PubMed  Google Scholar 

  6. Wilkins LG, Leray M, O’Dea A, Yuen B, Peixoto RS, Pereira TJ, Bik HM, Coil DA, Duffy JE, Herre EA (2019) Host-associated microbiomes drive structure and function of marine ecosystems. PLoS Biol 17:e3000533

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jones C, Lawton J, Shachak M (1994) Organisms as ecosystem engineers. Ecosystem management. Oikos 69:373–386

    Google Scholar 

  8. Callaway MBR (1994) Positive interactions in communities. Trends Ecol Evol 9:191–193

    PubMed  Google Scholar 

  9. Konopka A (2009) What is microbial community ecology? The ISME J 3:1223–1230

    PubMed  Google Scholar 

  10. Hernandez-Agreda A, Leggat W, Bongaerts P, Herrera C, Ainsworth TD (2018) Rethinking the coral microbiome: simplicity exists within a diverse microbial biosphere. MBio 9:e00812–e00818

    PubMed  PubMed Central  Google Scholar 

  11. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12

    CAS  PubMed  Google Scholar 

  12. Björk JR, O’Hara RB, Ribes M, Coma R, Montoya JM (2018) The dynamic core microbiome: Structure, dynamics and stability. bioRxiv:137885

  13. Pita L, Rix L, Slaby BM, Franke A, Hentschel U (2018) The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6:1–18

    Google Scholar 

  14. Risely A (2020) Applying the core microbiome to understand host–microbe systems. J Anim Ecol 89:1549–1558

    PubMed  Google Scholar 

  15. Glasl B, Webster NS, Bourne DG (2017) Microbial indicators as a diagnostic tool for assessing water quality and climate stress in coral reef ecosystems. Mar Biol 164:1–18

    Google Scholar 

  16. Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Google Scholar 

  17. Wernberg T, Krumhansl K, Filbee-Dexter K, Pedersen MF (2019) Status and trends for the world’s kelp forestsWorld seas: an environmental evaluation. Elsevier, pp 57–78

    Google Scholar 

  18. Smale DA, Teagle H, Hawkins SJ, Jenkins HL, Frontier N, Wilding C, King N, Jackson-Bué M, Moore PJ (2022) Climate-driven substitution of foundation species causes breakdown of a facilitation cascade with potential implications for higher trophic levels. J Ecol 110:2132–2144

    CAS  Google Scholar 

  19. Schaal G, Riera P, Leroux C (2012) Food web structure within kelp holdfasts (Laminaria): a stable isotope study. Mar Ecol 33:370–376

    Google Scholar 

  20. Anderson MJ, Diebel CE, Blom WM, Landers TJ (2005) Consistency and variation in kelp holdfast assemblages: spatial patterns of biodiversity for the major phyla at different taxonomic resolutions. J Exp Mar Biol Ecol 320:35–56

    Google Scholar 

  21. Arkema KK, Reed DC, Schroeter SC (2009) Direct and indirect effects of giant kelp determine benthic community structure and dynamics. Ecol 90:3126–3137

    Google Scholar 

  22. Teagle H, Moore PJ, Jenkins H, Smale DA (2018) Spatial variability in the diversity and structure of faunal assemblages associated with kelp holdfasts (Laminaria hyperborea) in the northeast Atlantic. PloS One 13:e0200411

    PubMed  PubMed Central  Google Scholar 

  23. Bué M, Smale DA, Natanni G, Marshall H, Moore PJ (2020) Multiple-scale interactions structure macroinvertebrate assemblages associated with kelp understory algae. Divers Distrib 26:1551–1565

    Google Scholar 

  24. King NG, Moore PJ, Wilding C, Jenkins HL, Smale DA (2021) Multiscale spatial variability in epibiont assemblage structure associated with stipes of kelp Laminaria hyperborea in the northeast Atlantic. Mar Ecol Prog Ser 672:33–44

    Google Scholar 

  25. Byrnes J, Stachowicz JJ, Hultgren KM, Randall Hughes A, Olyarnik SV, Thornber CS (2006) Predator diversity strengthens trophic cascades in kelp forests by modifying herbivore behaviour. Ecol Lett 9:61–71

    PubMed  Google Scholar 

  26. Schaal G, Leclerc J-C, Droual G, Leroux C, Riera P (2016) Biodiversity and trophic structure of invertebrate assemblages associated with understorey red algae in a Laminaria digitata bed. Mar Biol Res 12:513–523

    Google Scholar 

  27. Marzinelli EM, Campbell AH, Zozaya Valdes E, Vergés A, Nielsen S, Wernberg T, De Bettignies T, Bennett S, Caporaso JG, Thomas T (2015) Continental-scale variation in seaweed host-associated bacterial communities is a function of host condition, not geography. Environ Microbiol 17:4078–4088

    PubMed  Google Scholar 

  28. Weigel BL, Pfister CA (2019) Successional dynamics and seascape-level patterns of microbial communities on the canopy-forming kelps Nereocystis luetkeana and Macrocystis pyrifera. Front Microbiol 10:346

    PubMed Central  Google Scholar 

  29. Phelps CM, McMahon K, Bissett A, Bernasconi R, Steinberg PD, Thomas T, Marzinelli EM, Huggett MJ (2021) The surface bacterial community of an Australian kelp shows cross-continental variation and relative stability within regions. FEMS Microbiol Ecol 97:fiab089

    CAS  PubMed  Google Scholar 

  30. King NG, Moore PJ, Thorpe JM, Smale DA (2023) Consistency and Variation in the Kelp Microbiota: Patterns of Bacterial Community Structure Across Spatial Scales. Microb Ecol 85:1265–1275

    CAS  PubMed  Google Scholar 

  31. Wood G, Steinberg PD, Campbell AH, Vergés A, Coleman MA, Marzinelli EM (2022) Host genetics, phenotype and geography structure the microbiome of a foundational seaweed. Mol Ecol 31:2189–2206

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lemay MA, Davis KM, Martone PT, Parfrey LW (2021) Kelp-associated Microbiota are Structured by Host Anatomy1. J Phycol 57:1119–1130

    CAS  PubMed  Google Scholar 

  33. Lemay MA, Martone PT, Keeling PJ, Burt JM, Krumhansl KA, Sanders RD, Wegener Parfrey L (2018) Sympatric kelp species share a large portion of their surface bacterial communities. Environ Microbiol 20:658–670

    PubMed  Google Scholar 

  34. Bengtsson MM, Sjøtun K, Lanzén A, Øvreås L (2012) Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. The ISME J 6:2188–2198

    CAS  PubMed  Google Scholar 

  35. Ramírez-Puebla ST, Weigel BL, Jack L, Schlundt C, Pfister CA, Mark Welch JL (2022) Spatial organization of the kelp microbiome at micron scales. Microbiome 10:1–20

    Google Scholar 

  36. Stévenne C, Micha M, Plumier JC, Roberty S (2021) Corals and sponges under the light of the holobiont concept: how microbiomes underpin our understanding of marine ecosystems. Front Mar Sci 8:698853

  37. Dittami SM, Arboleda E, Auguet J-C, Bigalke A, Briand E, Cárdenas P, Cardini U, Decelle J, Engelen AH, Eveillard D (2021) A community perspective on the concept of marine holobionts: current status, challenges, and future directions. PeerJ 9:e10911

    PubMed  PubMed Central  Google Scholar 

  38. Lyu D, Zajonc J, Pagé A, Tanney CA, Shah A, Monjezi N, Msimbira LA, Antar M, Nazari M, Backer R (2021) Plant holobiont theory: The phytomicrobiome plays a central role in evolution and success. Microorganisms 9:675

    PubMed  PubMed Central  Google Scholar 

  39. Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y (2021) Linking plant secondary metabolites and plant microbiomes: a review. Front Plant Sci 12:621276

    PubMed  PubMed Central  Google Scholar 

  40. Gozzer-Wuest R, Alonso-Población E, Rojas-Perea S, Roa-Ureta RH (2022) What is at risk due to informality? Economic reasons to transition to secure tenure and active co-management of the jumbo flying squid artisanal fishery in Peru. Mar Pol 136:104886

    Google Scholar 

  41. Silva PC, Chacana ME (2005) Marine algae from Islas San Félix y San Ambrosio (Chilean Oceanic Islands). Cryptogam, Algol 26:103–118

    Google Scholar 

  42. Uribe RA, Perea Á, Ortiz M (2022) Determining ecosystem properties and short-term dynamical simulations in Eisenia cokeri kelp forest (north-center of Peru): Implications for conservation and monitoring. Estuar Coast Shelf Sci 269:107813

    Google Scholar 

  43. Carbajal P, Gamarra Salazar A, Moore PJ, Pérez-Matus A (2022) Different kelp species support unique macroinvertebrate assemblages, suggesting the potential community-wide impacts of kelp harvesting along the Humboldt current system. Aquat Conserv: Mar Freshwater Ecosystems 32:14–27

    Google Scholar 

  44. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP (2016) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Res 5:1492

  46. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    PubMed  PubMed Central  Google Scholar 

  47. McMurdie PJ, Holmes S (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS One 8:e61217

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  49. Clarke K, Gorley R (2001) 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

  50. Chao A (1984) Nonparametric estimation of the number of classes in a population. Sc and J Stat 11:265–270

    Google Scholar 

  51. Roitman S, López-Londoño T, Joseph Pollock F, Ritchie KB, Galindo-Martínez CT, Gómez-Campo K, González-Guerrero LA, Pizarro V, López-Victoria M, Iglesias-Prieto R (2020) Surviving marginalized reefs: assessing the implications of the microbiome on coral physiology and survivorship. Coral Reefs 39:795–807

    Google Scholar 

  52. Chavez FP, Bertrand A, Guevara-Carrasco R, Soler P, Csirke J (2008) The northern Humboldt Current System: Brief history, present status and a view towards the future. Prog Oceanogr 79:95–105

    Google Scholar 

  53. Gutiérrez D, Bouloubassi I, Sifeddine A, Purca S, Goubanova K, Graco M, Field D, Méjanelle L, Velazco F, Lorre A (2011) Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys Res Lett 38:L09603

  54. Brunet M, de Bettignies F, Le Duff N, Tanguy G, Davoult D, Leblanc C, Gobet A, Thomas F (2021) Accumulation of detached kelp biomass in a subtidal temperate coastal ecosystem induces succession of epiphytic and sediment bacterial communities. Environ Microbiol 23:1638–1655

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ihua MW, FitzGerald JA, Guihéneuf F, Jackson SA, Claesson MJ, Stengel DB, Dobson AD (2020) Diversity of bacteria populations associated with different thallus regions of the brown alga Laminaria digitata. PloS One 15:e0242675

    CAS  PubMed  PubMed Central  Google Scholar 

  56. James AK, English CJ, Nidzieko NJ, Carlson CA, Wilbanks EG (2020) Giant kelp microbiome altered in the presence of epiphytes. Limnol Oceanogr Lett 5:354–362

    Google Scholar 

  57. Vollmers J, Frentrup M, Rast P, Jogler C, Kaster A-K (2017) Untangling genomes of novel planctomycetal and verrucomicrobial species from monterey bay kelp forest metagenomes by refined binning. Front Microbiol 8:472

    PubMed  PubMed Central  Google Scholar 

  58. Weigel BL, Miranda KK, Fogarty EC, Watson AR, Pfister CA (2022) Functional Insights into the Kelp Microbiome from Metagenome-Assembled Genomes. mSystems 7:e0142221

Download references

Funding

D.A.S. was supported by a UKRI Future Leaders Fellowship (MR/S032827/1). P.J.M. was supported by NERC grant NE/S011692/2

Author information

Authors and Affiliations

Authors

Contributions

NGK, RU, DAS, and PJM conceived the designed the study. All authors contributed to fieldwork. NGK conducted all laboratory work. NGK and DAS lead the manuscript preparation, and all authors contributed equally to subsequent edits. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nathan G King.

Ethics declarations

Ethical Approval

No approval of research ethics committees was required to accomplish the goals of this study.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

ESM 1

(DOCX 1955 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, N.G., Uribe, R., Moore, P.J. et al. Multiscale Spatial Variability and Stability in the Structure and Diversity of Bacterial Communities Associated with the Kelp Eisenia cokeri in Peru. Microb Ecol 86, 2574–2582 (2023). https://doi.org/10.1007/s00248-023-02262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-023-02262-2

Keywords

Navigation