Skip to main content

Advertisement

Log in

Soil Conditioner Affects Tobacco Rhizosphere Soil Microecology

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Reasonable fertilization management can increase nutrient content and enzyme activity in rhizosphere soil, and even increase soil microbial richness. However, different fertilizers could raise distinct influences on the soil properties, including soil environmental factors (physicochemical properties and enzymatic activities) and microbial community. Here, the effects of two soil amendments (microbial fertilizer and woody peat) on environmental factors and microbial community structure in tobacco rhizosphere soil were evaluated, with the correlations between microbes and environmental factors explored. As the results, microbial fertilizer could effectively alleviate soil acidification, increase available potassium and organic matter contents in soil, and was also beneficial to increase nitrate reductase activity in rhizosphere soil. Fertilizers cause changes in the abundance of certain microbes in the soil. Besides, it was shown that the candidate phyla Gal15, Acidobacterota, Latescibacterota, Mortierellommycota, Basidiomycota, and Rozellomycota in tobacco rhizosphere soil had significant correlation with soil environmental factors. Through the functional analysis of these populations, it can be deduced that the changes in the abundance of certain microorganisms may be an important reason for the differences in environmental factors. All these indicated that the differences of environmental factors in different treatments are closely related to the abundance of some special soil microorganisms. Studying the life activities of these microbes would provide good guidance for exploring the interaction among crops, soil, and microorganisms and improving crop yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Hasnain M, Chen JW, Ahmed N, Memon S, Wang L, Wang YM, Wang P (2020) The effects of fertilizer type and application time on soil properties, plant traits, yield and quality of tomato. Sustainability 12(21):9065. https://doi.org/10.3390/su12219065

    Article  CAS  Google Scholar 

  2. Rahman MM, Khanom A, Biswas SK (2021) Effect of pesticides and chemical fertilizers on the nitrogen cycle and functional microbial communities in paddy soils: Bangladesh perspective. Bull Environ Contam Toxicol 106(2):243–249. https://doi.org/10.1007/s00128-020-03092-5

    Article  CAS  PubMed  Google Scholar 

  3. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Fact 13:66. https://doi.org/10.1186/1475-2859-13-66

    Article  PubMed  PubMed Central  Google Scholar 

  4. Wei YQ, Wang J, Chang RX, Zhan YB, Wei D, Zhang L, Chen Q (2021) Composting with biochar or woody peat addition reduces phosphorus bioavailability. Sci Total Environ 764:142841. https://doi.org/10.1016/j.scitotenv.2020.142841

    Article  CAS  PubMed  Google Scholar 

  5. Jimenez-Gomez A, Garcia-Estevez I, Teresa Escribano-Bailon M, Garcia-Fraile P, Rivas R (2021) Bacterial fertilizers based on Rhizobium laguerreae and Bacillus halotolerans enhance Cichorium endivia L. phenolic compound and mineral contents and plant development. Foods 10(2):424. https://doi.org/10.3390/foods10020424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Macik M, Gryta A, Sas-Paszt L, Frac M (2020) The status of soil microbiome as affected by the application of phosphorus biofertilizer: fertilizer enriched with beneficial bacterial strains. Int J Mol Sci 21(21):8003. https://doi.org/10.3390/ijms21218003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241(2):155–176. https://doi.org/10.1023/a:1016125726789

    Article  CAS  Google Scholar 

  8. Liu M, Han G, Zhang Q (2019) Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in southwest China. Int J Environ Res Public Health 16(20):3809. https://doi.org/10.3390/ijerph16203809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang XQ, Yu HY, Li FB, Liu TX, Wu WJ, Liu CP, Liu CS, Zhang XQ (2019) Enhanced immobilization of arsenic and cadmium in a paddy soil by combined applications of woody peat and Fe(NO3)3: possible mechanisms and environmental implications. Sci Total Environ 649:535–543. https://doi.org/10.1016/j.scitotenv.2018.08.387

    Article  CAS  PubMed  Google Scholar 

  10. Ding LJ, Su JQ, Sun GX, Wu JS, Wei WX (2018) Increased microbial functional diversity under long-term organic and integrated fertilization in a paddy soil. Appl Microbiol Biotechnol 102(4):1969–1982. https://doi.org/10.1007/s00253-017-8704-8

    Article  CAS  PubMed  Google Scholar 

  11. Garbeva P, van Veen JA, van Elsas JD (2004) Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243–270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

    Article  CAS  PubMed  Google Scholar 

  12. Hou E, Chen CR, Luo YQ, Zhou GY, Kuang YW, Zhang YG, Heenan M, Lu XK, Wen DZ (2018) Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Glob Change Biol 24(8):3344–3356. https://doi.org/10.1111/gcb.14093

    Article  Google Scholar 

  13. Plassart P, Prevost-Boure NC, Uroz S, Dequiedt S, Stone D, Creamer R, Griffiths RI, Bailey MJ, Ranjard L, Lemanceau P (2019) Soil parameters, land use, and geographical distance drive soil bacterial communities along a European transect. Sci Rep 9:605. https://doi.org/10.1038/s41598-018-36867-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sheng YY, Cong J, Lu H, Yang LS, Liu Q, Li DQ, Zhang YG (2019) Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. MicrobiologyOpen 8(10):e874. https://doi.org/10.1002/mbo3.874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng Q, Hu YT, Zhang SS, Noll L, Boeckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W (2019) Soil multifunctionality is affected by the soil environment and by microbial Choo community composition and diversity. Soil Biol Biochem 136:107521. https://doi.org/10.1016/j.soilbio.2019.107521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia T, Cao MW, Wang RH (2018) Effects of restoration time on microbial diversity in rhizosphere and non-rhizosphere soil of Bothriochloa ischaemum. Int J Environ Res Public Health 15(10):2155. https://doi.org/10.3390/ijerph15102155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Khan MAI, Biswas B, Smith E, Mahmud SA, Hasan NA, Khan MAW, Naidu R, Megharaj M (2018) Microbial diversity changes with rhizosphere and hydrocarbons in contrasting soils. Ecotox Environ Safe 156:434–442. https://doi.org/10.1016/j.ecoenv.2018.03.006

    Article  CAS  Google Scholar 

  18. Shang LR, Wan LQ, Zhou XX, Li S, Li XL (2020) Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE 15(10):e0240559. https://doi.org/10.1371/journal.pone.0240559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez CM, Alvarez LH, Celis LB, Cervantes FJ (2013) Humus-reducing microorganisms and their valuable contribution in environmental processes. Appl Microbiol Biotechnol 97(24):10293–10308. https://doi.org/10.1007/s00253-013-5350-7

    Article  CAS  PubMed  Google Scholar 

  20. Haruna A, Yahaya SM (2021) Recent advances in the chemistry of bioactive compounds from plants and soil microbes: a review. Chemistry Africa 4(2):231–248. https://doi.org/10.1007/s42250-020-00213-9

    Article  CAS  PubMed Central  Google Scholar 

  21. Zhang ST, Song XN, Li N, Zhang K, Liu GS, Li XS, Wang ZZ, He XB, Wang GF, Shao HF (2018) Influence of high-carbon basal fertiliser on the structure and composition of a soil microbial community under tobacco cultivation. Res Microbiol 169(2):115–126. https://doi.org/10.1016/j.resmic.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  22. Wang ZB, Yang Y, Xia YZ, Wu T, Zhu J, Yang JM, Li ZF (2019) Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci Rep 9:19969. https://doi.org/10.1038/s41598-019-55859-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen SF, Zhou YQ, Chen YR, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):884–890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  Google Scholar 

  24. Kuppardt A, Kleinsteuber S, Vogt C, Luders T, Harms H, Chatzinotas A (2014) Phylogenetic and functional diversity within toluene-degrading, sulphate-reducing consortia enriched from a contaminated aquifer. Microb Ecol 68(2):222–234. https://doi.org/10.1007/s00248-014-0403-8

    Article  CAS  PubMed  Google Scholar 

  25. Nagao T (1971) Studies on the growth of tobacco roots: IX. On the respiratory character of root apex. Crop Sci Soc Japan 40(3). https://doi.org/10.1626/jcs.40.341 

  26. Cooke JD, Hamilton-Taylor J, Tipping E (2007) On the acid-base properties of humic acid in soil. Environ Sci Technol 41(2):465–470. https://doi.org/10.1021/es061424h

    Article  CAS  PubMed  Google Scholar 

  27. Feng JY, Chu SS, Wang J, Wu DM, Mo QF, Zeng SC (2018) Comprehensive evaluation of soil fertility of five typical forest stands in South China. J South China Agric Univ 39(3):73–81

    CAS  Google Scholar 

  28. Bai ZH, Li HG, Yang XY, Zhou BK, Shi XJ, Wang BR, Li DC, Shen JB, Chen Q, Qin W, Oenema O, Zhang FS (2013) The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types. Plant Soil 372(1–2):27–37. https://doi.org/10.1007/s11104-013-1696-y

    Article  CAS  Google Scholar 

  29. Tang ZX, Chen LL, Chen ZB, Fu YL, Sun XL, Wang BB, Xia TY (2020) Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci Rep 10(1):19868. https://doi.org/10.1038/s41598-020-76919-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baldantoni D, Morra L, Saviello G, Alfani A (2016) Nutrient and toxic element soil concentrations during repeated mineral and compost fertilization treatments in a Mediterranean agricultural soil. Environ Sci Pollut Res 23(24):25169–25179. https://doi.org/10.1007/s11356-016-7748-0

    Article  CAS  Google Scholar 

  31. Hanief A, Matiichine D, Laursen AE, Bostan IV, McCarthy LH (2015) Nitrogen and phosphorus loss potential from biosolids-amended soils and biotic response in the receiving water. J Environ Qual 44(4):1293–1303. https://doi.org/10.2134/jeq2015.01.0029

    Article  CAS  PubMed  Google Scholar 

  32. Pardo T, Bernal MP, Clemente R (2014) Efficiency of soil organic and inorganic amendments on the remediation of a contaminated mine soil: I. Effects on trace elements and nutrients solubility and leaching risk. Chemosphere 107:121–128. https://doi.org/10.1016/j.chemosphere.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  33. Floch C, Capowiez Y, Criquet S (2009) Enzyme activities in apple orchard agroecosystems: how are they affected by management strategy and soil properties. Soil Biol Biochem 41(1):61–68. https://doi.org/10.1016/j.soilbio.2008.09.018

    Article  CAS  Google Scholar 

  34. Li Y, Fang F, Wei JL, Wu XB, Cui RZ, Li GS, Zheng FL, Tan DS (2019) Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment. Sci Rep 9:12014. https://doi.org/10.1038/s41598-019-48620-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang XP, Gao GB, Wu ZZ, Wen X, Zhong H, Zhong ZZ, Yang CB, Bian FY, Gai X (2020) Responses of soil nutrients and microbial communities to intercropping medicinal plants in moso bamboo plantations in subtropical China. Environ Sci Pollut Res 27(2):2301–2310. https://doi.org/10.1007/s11356-019-06750-2

    Article  CAS  Google Scholar 

  36. Wu LN, Jiang Y, Zhao FY, He XF, Liu HF, Yu K (2020) Increased organic fertilizer application and reduced chemical fertilizer application affect the soil properties and bacterial communities of grape rhizosphere soil. Sci Rep 10(1):9568. https://doi.org/10.1038/s41598-020-66648-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li YF, Geng YQ, Zhou HQ, Yang Y (2016) Comparison of soil acid phosphatase activity determined by different methods. Chin J Eco-Agric 24(1):98–104. https://doi.org/10.13930/j.cnki.cjea.150496

    Article  CAS  Google Scholar 

  38. Han X, Cheng ZH, Meng HW (2012) Soil properties, nutrient dynamics, and soil enzyme activities associated with garlic stalk decomposition under various conditions. PLoS ONE 7(11):e50868. https://doi.org/10.1371/journal.pone.0050868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Marko B, Sonja B, Andreas S, Annick S (2014) Jasmonate-dependent induction of polyphenol oxidase activity in tomato foliage is important for defense against Spodoptera exigua but not against Manduca sexta. BMC Plant Biol 14:257. https://doi.org/10.1186/s12870-014-0257-8

    Article  CAS  Google Scholar 

  40. Tao CY, Li R, Xiong W, Shen ZZ, Liu SS, Wang BB, Ruan YZ, Geisen S, Shen QR, Kowalchuk GA (2020) Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8(1):137. https://doi.org/10.1186/s40168-020-00892-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Brewer TE, Aronson EL, Arogyaswamy K, Billings SA, Botthoff JK, Campbell AN, Dove NC, Fairbanks D, Gallery RE, Hart SC, Kaye J, King G, Logan G, Lohse KA, Maltz MR, Mayorga E, O’Neill C, Owens SM, Packman A, Pett-Ridge J, Plante AF, Richter DD, Silver WL, Yang WH, Fierer N (2019) Ecological and genomic attributes of novel bacterial taxa that thrive in subsurface soil horizons. mBbio 10(5):e01318-e1319. https://doi.org/10.1128/mBio.01318-19

    Article  CAS  Google Scholar 

  42. Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL (2020) Recent understanding of soil acidobacteria and their ecological significance: a critical review. Front Microbiol 11:580024. https://doi.org/10.3389/fmicb.2020.580024

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kielak AM, Barreto CC, Kowalchuk GA, van Veen JA, Kuramae EE (2016) The ecology of acidobacteria: moving beyond genes and genomes. Front Microbiol 7:744. https://doi.org/10.3389/fmicb.2016.00744

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang YG, Cong J, Lu H, Li GL, Qu YY, Su XJ, Zhou JZ, Li DQ (2014) Community structure and elevational diversity patterns of soil Acidobacteria. J Environ Sci 26(8):1717–1724. https://doi.org/10.1016/j.jes.2014.06.012

    Article  CAS  Google Scholar 

  45. Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18(5):673–693. https://doi.org/10.1016/s0735-2689(99)00396-2

    Article  CAS  Google Scholar 

  46. Holzapfel C, Shahrokh P, Kafkewitz D (2010) Polyphenol oxidase activity in the roots of seedlings of Bromus (Poaceae) and other grass genera. Am J Bot 97(7):1195–1199. https://doi.org/10.3732/ajb.0900337

    Article  PubMed  Google Scholar 

  47. Martens DA (2002) Identification of phenolic acid composition of alkali-extracted plants and soils. Soil Sci Soc Am J 66(4):1240–1248. https://doi.org/10.2136/sssaj2002.1240

    Article  CAS  Google Scholar 

  48. Vazquez G, Fontenla E, Santos J, Freire MS, Gonzalez-Alvarez J, Antorrena G (2008) Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind Crop Prod 28(3):279–285. https://doi.org/10.1016/j.indcrop.2008.03.003

    Article  CAS  Google Scholar 

  49. Hug LA, Thomas BC, Sharon I, Brown CT, Sharma R, Hettich RL, Wilkins MJ, Williams KH, Singh A, Banfield JF (2016) Critical biogeochemical functions in the subsurface are associated with bacteria from new phyla and little studied lineages. Environ Microbiol 18(1):159–173. https://doi.org/10.1111/1462-2920.12930

    Article  CAS  PubMed  Google Scholar 

  50. Muneer MA, Huang XM, Hou W, Zhang YD, Cai YY, Munir MZ, Wu LQ, Zheng CY (2021) Response of fungal diversity, community composition, and functions to nutrients management in red soil. J Fungi 7(7):554. https://doi.org/10.3390/jof7070554

    Article  CAS  Google Scholar 

  51. Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn HE, Gupta RS (2015) A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie Van Leeuwenhoek 107(2):467–485. https://doi.org/10.1007/s10482-014-0344-8

    Article  PubMed  Google Scholar 

  52. Hsueh PR, Teng LJ, Yang PC, Chen YC, Pan HJ, Ho SW, Luh KT (1998) Nosocomial infections caused by Sphingomonas paucimobilis: clinical features and microbiological characteristics. Clin Infect Dis 26(3):676–681. https://doi.org/10.1086/514595

    Article  CAS  PubMed  Google Scholar 

  53. Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R (2002) Cloning and characterization of lin genes responsible for the degradation of Hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl Environ Microbiol 68(12):6021–6028. https://doi.org/10.1128/aem.68.12.6021-6028.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kulikova NA, Perminova IV (2021) Interactions between humic substances and microorganisms and their implications for nature-like bioremediation technologies. Molecules 26(9):2706. https://doi.org/10.3390/molecules26092706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kanokmedhakul S, Kanokmedhakul K, Nasomjai P, Louangsysouphanh S, Soytong K, Isobe M, Kongsaeree P, Prabpai S, Suksamrarn A (2006) Antifungal azaphilones from the fungus Chaetomium cupreum CC3003. J Nat Prod 69(6):891–895. https://doi.org/10.1021/np060051v

    Article  CAS  PubMed  Google Scholar 

  56. Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81. https://doi.org/10.1016/s0065-2911(08)60143-5

    Article  CAS  PubMed  Google Scholar 

  57. Blackwood CB, Waldrop MP, Zak DR, Sinsabaugh RL (2007) Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition. Environ Microbiol 9(5):1306–1316. https://doi.org/10.1111/j.1462-2920.2007.01250.x

    Article  CAS  PubMed  Google Scholar 

  58. Yuan J, Wen T, Zhang H, Zhao ML, Penton CR, Thomashow LS, Shen QR (2020) Predicting disease occurrence with high accuracy based on soil macroecological patterns of Fusarium wilt. ISME J 14(12):2936–2950. https://doi.org/10.1038/s41396-020-0720-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ishfaq M, Mahmood N, Akbar M, Nasir IA, Saleem M (2019) Biochemical and molecular characterization of catalase enzyme in the saprobic fungus: Sordaria fimicola. Pak J Pharm Sci 32(4):1717–1722

    CAS  PubMed  Google Scholar 

  60. Wang XY, Bian Q, Jiang YJ, Zhu LY, Chen Y, Liang YT, Sun B (2021) Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil Biol Biochem 153:108062. https://doi.org/10.1016/j.soilbio.2020.108062

    Article  CAS  Google Scholar 

  61. Tan XP, Xie BN, Wang JX, He WX, Wang XD, Wei GH (2014) County-scale spatial distribution of soil enzyme activities and enzyme activity indices in agricultural land: implications for soil quality assessment. Sci World J 2014:535768https://doi.org/10.1155/2014/535768

  62. Liu JB, Chen J, Chen GS, Guo JF, Li YQ (2020) Enzyme stoichiometry indicates the variation of microbial nutrient requirements at different soil depths in subtropical forests. PLoS ONE 15(2):e0220599. https://doi.org/10.1371/journal.pone.0220599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Caroline S. Harwood for the useful suggestions which helped to improve the quality of the manuscript.

Funding

This work was funded by Science and Technology Project of Hubei Tobacco Company (Grant No. 027Y2021-011), Science and Technology Planning Project of Qingdao (Shandong Province) Tobacco Company (Grant No. 201903), the “First-Class Grassland Science Discipline” program in Shandong Province, and the Talents of High Level Scientific Research Foundation (Grant Nos. 6651117005, 6651121004) of Qingdao Agricultural University.

Author information

Authors and Affiliations

Authors

Contributions

Y. X. and Z. Y. performed the experiments; B. G. and W. Z. conceived the work; D. S., Z. F., G. Q., H. P., Y. J., and S. G. supervised the project and provided samples and information from sampling area; and Y. X., Z. Y., and S.M. wrote the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Zhaobao Wang or Guodong Bo.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Yes.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Zhang, Y., Shen, M. et al. Soil Conditioner Affects Tobacco Rhizosphere Soil Microecology. Microb Ecol 86, 460–473 (2023). https://doi.org/10.1007/s00248-022-02030-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-022-02030-8

Keywords

Navigation