Skip to main content
Log in

Competition and Co-existence of Two Photorhabdus Symbionts with a Nematode Host

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Photorhabdus spp. (Enterobacteriales: Morganellaceae) occur exclusively as symbionts of Heterorhabditis nematodes for which they provide numerous services, including killing insects and providing nutrition and defence within the cadavers. Unusually, two species (Photorhabdus cinerea and Photorhabdus temperata) associate with a single population of Heterorhabditis downesi at a dune grassland site. Building on previous work, we investigated competition between these two Photorhabdus species both at the regional (between insects) and local (within insect) level by trait comparison and co-culture experiments. There was no difference between the species with respect to supporting nematode reproduction and protection of cadavers against invertebrate scavengers, but P. cinerea was superior to P. temperata in several traits: faster growth rate, greater antibacterial and antifungal activity and colonisation of a higher proportion of nematodes in co-culture. Moreover, where both bacterial symbionts colonised single nematode infective juveniles, P. cinerea tended to dominate in numbers. Differences between Photorhabdus species were detected in the suite of secondary metabolites produced: P. temperata produced several compounds not produced by P. cinerea including anthraquinone pigments. Bioluminescence emitted by P. temperata also tended to be brighter than that from P. cinerea. Bioluminescence and pigmentation may protect cadavers against scavengers that rely on sight. We conclude that while P. cinerea may show greater local level (within-cadaver) competitive success, co-existence of the two Photorhabdus species in the spatially heterogeneous environment of the dunes is favoured by differing specialisations in defence of the cadaver against differing locally important threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adams BJ, Fodor A, Koppenhofer HS, Stackebrandt E, Patricia Stock S, Klein MG (2006) Biodiversity and systematics of nematode-bacterium entomopathogens. Biol Control 37:32–49

    Article  Google Scholar 

  2. Alatorre-Rosas R, Kaya HK (1990) Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. J Invertebr Pathol 55:179–188

    Article  Google Scholar 

  3. Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6:1109–1122

    Article  Google Scholar 

  4. Ansari M, Tirry L, Moens M (2005) Antagonism between entomopathogenic fungi and bacterial symbionts of entomopathogenic nematodes. Biocontrol 50:465–475

    Article  Google Scholar 

  5. Bager R, Roghanian M, Gerdes K, Clarke DJ (2016) Alarmone (p)ppGpp regulates the transition from pathogenicity to mutualism in Photorhabdus luminescens. Mol Microbiol 100:735–747

    Article  CAS  PubMed  Google Scholar 

  6. Baur M, Kaya H, Strong D (1998) Foraging ants as scavengers on entomopathogenic nematode-killed insects. Biol Control 12:231–236

    Article  Google Scholar 

  7. Blackburn D, Wood PL, Burk TJ, Crawford B, Wright SM, Adams BJ (2016) Evolution of virulence in Photorhabdus spp., entomopathogenic nematode symbionts. Syst Appl Microbiol 39:173–179

    Article  PubMed  Google Scholar 

  8. Blanco-Perez R, Bueno-Pallero FA, Neto L, Campos-Herrera R (2017) Reproductive efficiency of entomopathogenic nematodes as scavengers. Are they able to fight for insect’s cadavers? J Invertebr Pathol 148:1–9

    Article  PubMed  Google Scholar 

  9. Bode E, Heinrich AK, Hirschmann M, Abebew D, Shi YN, Vo TD, Wesche F, Shi YM, Grun P, Simonyi S et al (2019) Promoter activation in delta hfq mutants as an eficient tool for specialized metabolite production enabling direct bioactivity testing. Angew Chem Int Ed 58:18957–18963

    Article  CAS  Google Scholar 

  10. Bode HB, Bethe B, Hofs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    Article  CAS  PubMed  Google Scholar 

  11. Bode HB (2009) Entomopathogenic bacteria as a source of secondary metabolites. Curr Opin Chem Biol 13:224–230

    Article  CAS  PubMed  Google Scholar 

  12. Bode HB, Reimer D, Fuchs SW, Kirchner F, Dauth C, Kegler C, Lorenzen W, Brachmann AO, Grün P (2012) Determination of the absolute configuration of peptide natural products by using stable isotope labeling and mass spectrometry. Chem Eur J 18:2342–2348

    Article  CAS  PubMed  Google Scholar 

  13. Boemare N, Lanois A (1996) Training courses for characterisation of Xenorhabdus and Photorhabdus phase variation. In: Boemare N, Ehlers R-U, Fodor A, Szentirmai A (eds) COST 819 entomopathogenic nematodes - symbiosis and pathogenicity of nematode-bacterium complexes. European Commision, Brussels, pp 109–114

    Google Scholar 

  14. Challinor VL, Bode HB (2015) Bioactive natural products from novel microbial sources. Ann N Y Acad Sci 1354:82–97

    Article  PubMed  Google Scholar 

  15. Chapuis E, Emelianoff V, Paulmier V, Le Brun N, Pages S, Sicard M, Ferdy JB (2009) Manifold aspects of specificity in a nematode-bacterium mutualism. J Evol Biol 22:2104–2117

    Article  CAS  PubMed  Google Scholar 

  16. Chaston J, Goodrich-Blair H (2010) Common trends in mutualism revealed by model associations between invertebrates and bacteria. FEMS Microbiol Rev 34:41–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chaston JM, Suen G, Tucker SL, Andersen AW, Bhasin A, Bode E, Bode HB, Brachmann AO, Cowles CE, Cowles KN, Darby C, de Leon L, Drace K, Du ZJ, Givaudan A, Tran EEH, Jewell KA, Knack JJ, Krasomil-Osterfeld KC, Kukor R, Lanois A, Latreille P, Leimgruber NK, Lipke CM, Liu RY, Lu XJ, Martens EC, Marri PR, Medigue C, Menard ML, Miller NM, Morales-Soto N, Norton S, Ogier JC, Orchard SS, Park D, Park Y, Qurollo BA, Sugar DR, Richards GR, Rouy Z, Slominski B, Slominski K, Snyder H, Tjaden BC, van der Hoeven R, Welch RD, Wheeler C, Xiang BS, Barbazuk B, Gaudriault S, Goodner B, Slater SC, Forst S, Goldman BS, Goodrich-Blair H (2011) The entomopathogenic bacterial endosymbionts Xenorhabdus and Photorhabdus: convergent lifestyles from divergent genomes. PLoS One 6:e27909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chesson P (2000) General theory of competitive coexistence in spatially-varying environments. Theor Popul Biol 58:211–237

    Article  CAS  PubMed  Google Scholar 

  19. Ciche TA, Kim KS, Kaufmann-Daszczuk B, Nguyen KCQ, Hall DH (2008) Cell invasion and matricide during Photorhabdus luminescens transmission by Heterorhabditis bacteriophora nematodes. Appl Environ Microbiol 74:2275–2287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duncan LW, Dunn DC, Bague G, Nguyen K (2003) Competition between entomopathogenic and free-living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. J Nematol 35:187–193

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Easom CA, Clarke DJ (2012) HdfR is a regulator in Photorhabdus luminescens that modulates metabolism and symbiosis with the nematode Heterorhabditis. Environ Microbiol 14:953–966

    Article  CAS  PubMed  Google Scholar 

  22. Easom CA, Joyce SA, Clarke DJ (2010) Identification of genes involved in the mutualistic colonization of the nematode Heterorhabditis bacteriophora by the bacterium Photorhabdus luminescens. BMC Microbiol 10:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ebert D (2013) The epidemiology and evolution of symbionts with mixed-mode transmission. Annu Rev Ecol Evol Syst 44:623–643

  24. Eleftherianos I, Boundy S, Joyce SA, Aslam S, Marshall JW, Cox RJ, Simpson TJ, Clarke DJ, Reynolds SE (2007) An antibiotic produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Proc Natl Acad Sci 104:2419–2424

    Article  CAS  PubMed  Google Scholar 

  25. Fenton A, Magoolagan L, Kennedy Z, Spencer KA (2011) Parasite-induced warning coloration: a novel form of host manipulation. Anim Behav 81:417–422

    Article  Google Scholar 

  26. Ferreira T, van Reenen CA, Endo A, Tailliez P, Pages S, Sproer C, Malan AP, Dicks LMT (2014) Photorhabdus heterorhabditis sp. nov., a symbiont of the entomopathogenic nematode Heterorhabditis zealandica. Int J Syst Evol Microbiol 64:1540–1545

    Article  PubMed  Google Scholar 

  27. Finney DJ (1971) Probit analysis3rd edn. Cambridge University Press, Cambridge, UK

  28. Gaudriault S, Duchaud E, Lanois A, Canoy AS, Bourot S, DeRose R, Kunst F, Boemare N, Givaudan A (2006) Whole-genome comparison between Photorhabdus strains to identify genomic regions involved in the specificity of nematode interaction. J Bacteriol 188:809–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerritsen LJM, Wiegers GL, Smits PH (1998) Pathogenicity of new combinations of Heterorhabditis spp. and Photorhabdus luminescens against Galleria mellonella and Tipula oleracea. Biol. Control 13:9–15

    Google Scholar 

  30. Ghoul M, Mitri S (2016) The ccology and evolution of microbial competition. Trends Microbiol 24:833–845

    Article  CAS  Google Scholar 

  31. Goodrich-Blair H, Clarke DJ (2007) Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads to the same destination. Mol Microbiol 64:260–268

    Article  CAS  PubMed  Google Scholar 

  32. Gruner DS, Kolekar A, McLaughlin JP, Strong DR (2009) Host resistance reverses the outcome of competition between microparasites. Ecology 90:1721–1728

    Article  PubMed  Google Scholar 

  33. Guckes KR, Cecere AG, Wasilko NP, Williams AL, Bultman KM, Mandel MJ, Miyashiro T (2019) Incompatibility of vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J Bacteriol 201:e00221–e00219

  34. Gulcu B, Hazir S, Kaya HK (2012) Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. J Invertebr Pathol 110:326–333

    Article  CAS  PubMed  Google Scholar 

  35. Haddock SHD, Moline MA, Case JF (2010) Bioluminescence in the sea. Annu Rev Mar Sci 2:443–493

    Article  Google Scholar 

  36. Han R, Ehlers R-U (2001) Effect of Photorhabdus luminescens phase variants on the in vivo and in vitro development and reproduction of the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae. FEMS Microbiol Ecol 35:239–247

    Article  CAS  PubMed  Google Scholar 

  37. Han RC, Ehlers RU (1998) Cultivation of axenic Heterorhabditis spp. dauer juveniles and their response to non-specific Photorhabdus luminescens food signals. Nematologica 44:425–435

    Article  Google Scholar 

  38. Henry LM, Peccoud J, Simon JC, Hadfield JD, Maiden MJC, Ferrari J, Godfray HCJ (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23:1713–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hillman K, Goodrich-Blair H (2016) Are you my symbiont? Microbial polymorphic toxins and antimicrobial compounds as honest signals of beneficial symbiotic defensive traits. Curr Opin Microbiol 31:184–190

    Article  CAS  PubMed  Google Scholar 

  41. Hu K, Webster JM (2000) Antibiotic production in relation to bacterial growth and nematode development in Photorhabdus-Heterorhabditis infected Galleria mellonella larvae. FEMS Microbiol Lett 189:219–223

    CAS  PubMed  Google Scholar 

  42. Hu KJ, Li JX, Li B, Webster JM, Chen GH (2006) A novel antimicrobial epoxide isolated from larval Galleria mellonella infected by the nematode symbiont, Photorhabdus luminescens (Enterobacteriaceae). Bioorg Med Chem 14:4677–4681

    Article  CAS  PubMed  Google Scholar 

  43. Hu KJ, Li JX, Wang WJ, Wu HM, Lin H, Webster JM (1998) Comparison of metabolites produced in vitro and in vivo by Photorhabdus luminescens, a bacterial symbiont of the entomopathogenic nematode Heterorhabditis megidis. Can J Microbiol 44:1072–1077

    Article  CAS  Google Scholar 

  44. Hu KJ, Li JX, Webster JM (1997) Quantitative analysis of a bacteria-derived antibiotic in nematode-infected insects using HPLC-UV and TLC-UV methods. J Chromatogr B 703:177–183

    Article  CAS  Google Scholar 

  45. Hyrsl P, Ciz M, Lojek A (2004) Comparison of the bioluminescence of Photorhabdus species and subspecies type strains. Folia Microbiol 49:539–542

    Article  CAS  Google Scholar 

  46. Itoh H, Jang S, Takeshita K, Ohbayashi T, Ohnishi N, Meng XY, Mitani Y, Kikuchi Y (2019) Host-symbiont specificity determined by microbe-microbe competition in an insect gut. Proc Natl Acad Sci 116:22673–22682

    Article  CAS  PubMed  Google Scholar 

  47. Jones RS, Fenton A, Speed MP (2016) “Parasite-induced aposematism” protects entomopathogenic nematode parasites against invertebrate enemies. Behav Ecol 27:645–651

    Article  PubMed  Google Scholar 

  48. Jones RS, Fenton A, Speed MP, Mappes J (2017) Investment in multiple defences protects a nematode-bacterium symbiosis from predation. Anim Behav 129:1–8

    Article  Google Scholar 

  49. Joyce SA, Brachmann AO, Glazer I, Lango L, Schwar G, Clarke DJ, Bode HB (2008) Bacterial biosynthesis of a multipotent stilbene. Angew Chem Int Ed 47:1942–1945

    Article  CAS  Google Scholar 

  50. Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey L (ed) Manual of techniques in insect pathology. Academic Press, New York, pp 281–324

    Chapter  Google Scholar 

  51. Kazimierczak W, Skrzypek H, Sajnaga E, Skowronek M, Wasko A, Kreft A (2017) Strains of Photorhabdus spp. associated with polish Heterorhabditis isolates: their molecular and phenotypic characterization and symbiont exchange. Arch Microbiol 199:979–989

    Article  CAS  PubMed  Google Scholar 

  52. Koppenhöfer AM, Baur ME, Stock SP, Choo HY, Chinnasri B, Kaya HK (1997) Survival of entomopathogenic nematodes within host cadavers in dry soil. Appl Soil Ecol 6:231–240

    Article  Google Scholar 

  53. Koppenhöfer AM, Kaya HK (1996) Coexistence of entomopathogenic nematode species (Steinernematidae and Heterorhabditidae) with different foraging behavior. Fundam Appl Nematol 19:175–183

    Google Scholar 

  54. Li JX, Chen GH, Wu HM, Webster JM (1995) Identification of 2 pigments and a hydroxystilbene antibiotic from Photorhabdus luminescens. Appl Environ Microbiol 61:4329–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Machado RAR, Wuthrich D, Kuhnert P, Arce CCM, Thonen L, Ruiz C, Zhang X, Robert CAM, Karimi J, Kamali S, Ma J, Bruggmann R, Erb M (2018) Whole-genome-based revisit of Photorhabdus phylogeny: proposal for the elevation of most Photorhabdus subspecies to the species level and description of one novel species Photorhabdus bodei sp nov., and one novel subspecies Photorhabdus laumondii subsp clarkei subsp nov. Int J Syst Evol Microbiol 68:2664–2681

    Article  CAS  PubMed  Google Scholar 

  56. Maher AMD 2014 Co-existence and niche separation of two subspecies of Photorhabdus temperata associated with Heterorhabditis downesi in a dune grassland., Ph. D. Thesis, Maynooth University.

  57. Maher AMD, Asaiyah MAM, Brophy C, Griffin CT (2017) An entomopathogenic nematode extends its niche by associating with different symbionts. Microb Ecol 73:211–223

    Article  PubMed  Google Scholar 

  58. Maneesakorn P, An RS, Daneshvar H, Taylor K, Bai XD, Adams BJ, Grewal PS, Chandrapatya A (2011) Phylogenetic and cophylogenetic relationships of entomopathogenic nematodes (Heterorhabditis: Rhabditida) and their symbiotic bacteria (Photorhabdus: Enterobacteriaceae). Mol Phylogenet Evol 59:271–280

    Article  PubMed  Google Scholar 

  59. McLean AHC, Parker BJ, Hrcek J, Kavanagh JC, Wellham PAD, Godfray HCJ (2018) Consequences of symbiont co-infections for insect host phenotypes. J Anim Ecol 87:478–488

    Article  PubMed  Google Scholar 

  60. McMullen JG, McQuade R, Ogier JC, Pages S, Gaudriault S, Stock SP (2017) Variable virulence phenotype of Xenorhabdus bovienii (gamma-Proteobacteria: Enterobacteriaceae) in the absence of their vector hosts. Microbiology 163:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meli SB, Bashey F (2018) Trade-off between reproductive and anti-competitor abilities in an insect-parasitic nematode-bacteria symbiosis. Ecol Evol 8:10847–10856

    Article  Google Scholar 

  62. Molloy EM, Hertweck C (2017) Antimicrobial discovery inspired by ecological interactions. Curr Opin Microbiol 39:121–127

    Article  PubMed  Google Scholar 

  63. Murfin KE, Dillman AR, Foster JM, Bulgheresi S, Slatko BE, Sternberg PW, Goodrich-Blair H (2012) Nematode-bacterium symbioses - cooperation and conflict revealed in the “omics” age. Biol Bull 223:85–102

  64. Murfin KE, Lee MM, Klassen JL, McDonald BR, Larget B, Forst S, Stock SP, Currie CR, Goodrich-Blair H (2015) Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. Mbio:6 e00076-15

  65. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266

    Article  CAS  PubMed  Google Scholar 

  66. Orozco RA, Molnar I, Bode H, Stock SP (2016) Bioprospecting for secondary metabolites in the entomopathogenic bacterium Photorhabdus luminescens subsp. sonorensis. J Invertebr Pathol 141:45–52

    Article  CAS  PubMed  Google Scholar 

  67. Pankewitz F, Hilker M (2008) Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev 83:209–226

    Article  PubMed  Google Scholar 

  68. Peat SM, Adams BJ (2008) Natural selection on the luxA gene of bioluminescent bacteria. Symbiosis 46:101–108

    CAS  Google Scholar 

  69. Peat SM, Ffrench-Constant RH, Waterfield NR, Marokhazi J, Fodor A, Adams BJ (2010) A robust phylogenetic framework for the bacterial genus Photorhabdus and its use in studying the evolution and maintenance of bioluminescence: a case for 16S, gyrB, and glnA. Mol Phylogenet Evol 57:728–740

    Article  CAS  PubMed  Google Scholar 

  70. Richardson WH, Schmidt TM, Nealson KH (1988) Identification of an anthraquinone pigment and a hydroxystilbene antibiotic from Xenorhabdus luminescens. Appl Environ Microbiol 54:1602–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rodwell JS, Burks HJB, Malloch AJC (2000) Shingle, strandline and sand-dune communities. In: Rodwell JS (ed) British plant communities. Cambridge University Press, Cambridge, pp 113–250

    Chapter  Google Scholar 

  72. Rolston AN, Griffin CT, Downes MJ (2005) Distribution of entomopathogenic nematodes in an Irish sand dune system. Nematology 7:259–266

    Article  Google Scholar 

  73. Russell SL (2019) Transmission mode is associated with environment type and taxa across bacteriaeukaryote symbioses: a systematic review and meta-analysis. FEMS Microbiol Lett 366:fnz013

    Article  CAS  PubMed  Google Scholar 

  74. Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci U S A 108:10800–10807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. San-Blas E, Gowen SR (2008) Facultative scavenging as a survival strategy of entomopathogenic nematodes. Int J Parasitol 38:85–91

    Article  PubMed  Google Scholar 

  76. Sharma S, Waterfield N, Bowen D, Rocheleau T, Holland L, James R, ffrench-Constant R (2002) The lumicins: novel bacteriocins from Photorhabdus luminescens with similarity to the uropathogenic-specific protein (USP) from uropathogenic Escherichia coli. FEMS Microbiol Lett 214:241–249

    Article  CAS  PubMed  Google Scholar 

  77. Stock SP, Goodrich-Blair H (2012) Nematode parasites, pathogens and associates of insects and invertebrates of economic importance. In: Lacey LA (ed) Manual of Techniques in Invertebrate Pathology. Academic Press, London, UK, pp 373–439

    Chapter  Google Scholar 

  78. Tailliez P, Laroui C, Ginibre N, Paule A, Pages S, Boemare N (2010) Phylogeny of Photorhabdus and Xenorhabdus based on universally conserved protein-coding sequences and implications for the taxonomy of these two genera. Proposal of new taxa: X. vietnamensis sp nov., P. luminescens subsp caribbeanensis subsp nov., P. luminescens subsp hainanensis subsp nov., P. temperata subsp khanii subsp nov., P. temperata subsp tasmaniensis subsp nov., and the reclassification of P. luminescens subsp thracensis as P. temperata subsp thracensis comb. nov. Int J Syst Evol Microbiol 60:1921–1937

    Article  PubMed  Google Scholar 

  79. Tobias NJ, Shi YM, Bode HB (2018) Refining the natural product repertoire in entomopathogenic bacteria. Trends Microbiol 26:833–840

    Article  CAS  PubMed  Google Scholar 

  80. Tobias NJ, Wolff H, Djahanschiri B, Grundmann F, Kronenwerth M, Shi YM, Simonyi S, Grun P, Shapiro-Ilan D, Pidot SJ, Stinear TP, Ebersberger I, Bode HB (2017) Natural product diversity associated with the nematode symbionts Photorhabdus and Xenorhabdus. Nat Microbiol 2:1676–1685

    Article  CAS  PubMed  Google Scholar 

  81. Tóth T, Lakatos T (2008) Photorhabdus temperata subsp. cinerea subsp. nov., isolated from Heterorhabditis nematodes. Int J Syst Evol Microbiol 58:2579–2581

    Article  PubMed  CAS  Google Scholar 

  82. Tóth T, Lakatos T (2009) Two different bacterial symbionts of Heterorhabditis megidis and Heterorhabditis downesi inside one population. IOBC/wprs Bulletin 45:395–397 (see http://www.journalabbr.com/journal/iobcwprs-bulletin.html.)

  83. Verhoeven R (2002) The structure of the microtrophic system in a development series of dune soils. Pedobiologia 46:75–89

    Article  Google Scholar 

  84. Vizcaino MI, Guo X, Crawford JM (2014) Merging chemical ecology with bacterial genome mining for secondary metabolite discovery. J Ind Microbiol Biotechnol 41:285–299

    Article  CAS  PubMed  Google Scholar 

  85. Walsh KT, Webster JM (2003) Interaction of microbial populations in Steinernema (Steinernematidae, Nematoda) infected Galleria mellonella larvae. J Invertebr Pathol 83:118–126

    Article  PubMed  Google Scholar 

  86. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a Host of Hosts. Annu Rev Microbiol 63:557–574

    Article  CAS  PubMed  Google Scholar 

  87. Zhou XS, Kaya HK, Heungens K, Goodrich-Blair H (2002) Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Appl Environ Microbiol 68:6202–6209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A.M.D. Maher was funded by a doctoral fellowship from the Irish Research Council for Science, Engineering and Technology (IRCSET); M. Asaiyah was funded by a Postgraduate Scholarship from the Ministry of Higher Education and Scientific Research in Libya. The BMG Clariostar multi-mode microplate reader is funded with the financial support of Science Foundation Ireland (SFI) under Grant Number 16/RI/3399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine T. Griffin.

Additional information

Abigail M. D. Maher and Mohamed Asaiyah are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maher, A.M.D., Asaiyah, M., Quinn, S. et al. Competition and Co-existence of Two Photorhabdus Symbionts with a Nematode Host. Microb Ecol 81, 223–239 (2021). https://doi.org/10.1007/s00248-020-01573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01573-y

Keywords

Navigation