Skip to main content
Log in

Therapeutic Effects of the In Vitro Cultured Human Gut Microbiota as Transplants on Altering Gut Microbiota and Improving Symptoms Associated with Autism Spectrum Disorder

Microbial Ecology Aims and scope Submit manuscript

Abstract

Autism spectrum disorder (ASD) is a brain-based neurodevelopmental disorder characterized by behavioral abnormalities. Accumulating studies show that the gut microbiota plays a vital role in the pathogenesis of ASD, and gut microbiota transplantation (GMT) is a promising technique for the treatment of ASD. In clinical applications of GMT, it is challenging to obtain effective transplants because of the high costs of donor selection and heterogeneity of donors’ gut microbiota, which can cause different clinical responses. In vitro batch culture is a fast, easy-to-operate, and repeatable method to culture gut microbiota. Thus, the present study investigates the feasibility of treating ASD with in vitro cultured gut microbiota as transplants. We cultured gut microbiota via the in vitro batch culture method and performed GMT in the maternal immune activation (MIA)–induced ASD mouse model with original donor microbiota and in vitro cultured microbiota. Open field, three-chamber social, marble burying, and self-grooming tests were used for behavioral improvement assessment. Serum levels of chemokines were detected. Microbial total DNA was extracted from mouse fecal samples, and 16S rDNA was sequenced using Illumina. Our results showed that GMT treatment with original and cultured donor gut microbiota significantly ameliorated anxiety-like and repetitive behaviors and improved serum levels of chemokines including GRO-α (CXCL1), MIP-1α (CCL3), MCP-3 (CCL7), RANTES (CCL5), and Eotaxin (CCL11) in ASD mice. Meanwhile, the gut microbial communities of the two groups that received GMT treatment were changed compared with the ASD mice groups. In the group treated with in vitro cultured donor gut microbiota, there was a significant decrease in the relative abundance of key differential taxa, including S24-7, Clostridiaceae, Prevotella_other, and Candidatus Arthromitus. The relative abundance of these taxa reached close to the level of healthy mice. Prevotella_other also decreased in the group treated with original donor gut microbiota, with a significant increase in Ruminococcaceae and Oscillospira. The present study demonstrated that GMT with in vitro cultured microbiota also improved behavioral abnormalities and chemokine disorders in an ASD mouse model compared with GMT with original donor gut microbiota. In addition, it significantly modified several key differential taxa in gut microbial composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

The raw Illumina read data for all samples were deposited in the NCBI Sequence Read Archive database under accession number PRJNA592843.

Abbreviations

ASD:

autism spectrum disorder

GMT:

gut microbiota transplantation

MIA:

maternal immune activation

SPF:

specific pathogen-free

BNM:

basal nutrient medium

Poly (I:C):

polyinosine-polycytidylic acid sodium salt

OTUs:

operational taxonomic units

PCoA:

principal coordinates analysis

CPCoA:

constrained principal coordinate analysis

LEfSe:

linear discriminant Analysis Effect Size

LDA:

linear discriminant analysis

sem:

standard error of mean

References

  1. Lai MC, Lombardo MV, Baron Cohen S (2014) Autism. Lancet 383(9920):896–910

    Article  PubMed  Google Scholar 

  2. Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, Bonnot O, Weismann-Arcache C, Botbol M, Lauth B et al (2014) Gene x environment interactions in autism spectrum disorders: role of epigenetic mechanisms. Front Psychiatry 5:53

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vuong HE, Hsiao EY (2016) Emerging roles for the gut microbiome in autism Spectrum disorder. Biol Psychiatry 81(5):411–423

    Article  PubMed  PubMed Central  Google Scholar 

  4. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA (2011) Gastrointestinal flora and gastrointestinal status in children with autism – comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11(1):22

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coury DL, Ashwood P, Fasano A, Fuchs G, Geraghty M, Kaul A, Mawe G, Patterson P, Jones NEJP (2012) Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics 130(Suppl 2(Supplement)):S160

    Article  PubMed  Google Scholar 

  6. McElhanon BO, McCracken C, Karpen S, Sharp WG (2014) Gastrointestinal symptoms in autism spectrum disorder: a meta-analysis. Pediatrics 133(5):872–883

    Article  PubMed  Google Scholar 

  7. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Krajmalnik-Brown R, Lozupone C, Kang DW, Adams JB (2015) Gut bacteria in children with autism spectrum disorders: challenges and promise of studying how a complex community influences a complex disease. Microb Ecol Health Dis 26:26914

    PubMed  Google Scholar 

  9. Jyonouchi H, Sun S, Le H (2001) Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol 120(1–2):170–179

    Article  PubMed  CAS  Google Scholar 

  10. Suzuki K, Matsuzaki H, Iwata K, Kameno Y, Shimmura C, Kawai S, Yoshihara Y, Wakuda T, Takebayashi K, Takagai S et al (2011) Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS One 6(5):e20470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Xu N, Li X, Zhong Y (2015) Inflammatory cytokines: potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediat Inflamm 2015:531518

    Google Scholar 

  12. Li Q, Han Y, Abc D, Hagerman RJ (2017) The gut microbiota and autism Spectrum disorders. Front Cell Neurosci 11:120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Borody TJ, Alexander K (2012) Fecal microbiota transplantation and emerging applications. Nat Rev Gastroenterol Hepatol 9(2):88–96

    Article  CAS  Google Scholar 

  14. Kang DW, Adams JB, Gregory AC, Borody T, Chittick L, Fasano A, Khoruts A, Geis E, Maldonado J, Mcdonough-Means S (2017) Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hamilton MJ, Weingarden AR, Sadowsky MJ, Khoruts A (2012) Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am J Gastroenterol 107(5):761–767

    Article  PubMed  Google Scholar 

  16. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W (2015) Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology 149(1):102–109

    Article  PubMed  Google Scholar 

  17. Siegmund B (2017) Is intensity the solution for FMT in ulcerative colitis? Lancet 389(10075):1170–1172

    Article  PubMed  Google Scholar 

  18. Venema K, Van den Abbeele P (2013) Experimental models of the gut microbiome. Best Pract Res Clin Gastroenterol 27(1):115–126

    Article  PubMed  CAS  Google Scholar 

  19. Pham VT, Mohajeri MH (2018) The application of in vitro human intestinal models on the screening and development of pre- and probiotics. Benefic Microbes 9(5):725–742

    Article  CAS  Google Scholar 

  20. Liu Y, Gibson GR, Walton GE (2016) An in vitro approach to study effects of prebiotics and probiotics on the faecal microbiota and selected immune parameters relevant to the elderly. PLoS One 11(9):e0162604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Hsiao EY, Mcbride SW, Janet C, Mazmanian SK, Patterson PH (2012) Modeling an autism risk factor in mice leads to permanent immune dysregulation. Proc Natl Acad Sci 109(31):12776–12781

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Brooks PT, Brakel KA, Bell JA, Bejcek CE, Gilpin T, Brudvig JM, Mansfield LS (2017) Transplanted human fecal microbiota enhanced Guillain Barré syndrome autoantibody responses after Campylobacter jejuni infection in C57BL/6 mice. Microbiome 5(1):92

    Article  PubMed  PubMed Central  Google Scholar 

  23. Malkova NV, Yu CZ, Hsiao EY, Moore MJ, Patterson PH (2012) Maternal immune activation yields offspring displaying mouse versions of the three core symptoms of autism. Brain Behav Immun 26(4):607–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol Evol 12(6):R60

    Article  Google Scholar 

  25. Coiro P, Padmashri R, Suresh A, Spartz E, Pendyala G, Chou S, Jung Y, Meays B, Roy S, Gautam N (2015) Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain Behav Immun 50:249–258

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23(1):297–302

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smith SEP, Jennifer L, Krassimira G, Karoly M, Patterson PH (2007) Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 27(40):10695–10702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, Ostatnikova D (2015) Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav 138:179–187

    Article  PubMed  CAS  Google Scholar 

  29. Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, Krajmalnik-Brown R (2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 8(7):e68322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J (2007) Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5(10):e244

    Article  PubMed Central  CAS  Google Scholar 

  31. Liu F, Horton-Sparks K, Hull V, Li RW, Martinez-Cerdeno V (2018) The valproic acid rat model of autism presents with gut bacterial dysbiosis similar to that in human autism. Mol Autism 9:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin A (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, Cristofori F, Guerzoni ME, Gobbetti M, Francavilla R (2013) Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One 8(10):e76993

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, Youn E, Summanen PH, Granpeesheh D, Dixon D, Liu M, Molitoris DR, Green 3rd JA (2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4):444–453

    Article  PubMed  CAS  Google Scholar 

  35. Finegold SM (2008) Therapy and epidemiology of autism–clostridial spores as key elements. Med Hypotheses 70(3):508–511

    Article  PubMed  Google Scholar 

  36. Parracho HM, Bingham MO, Gibson GR, McCartney AL (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54(10):987–991

    Article  PubMed  Google Scholar 

  37. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, Zink EM, Geschwind DH, Krajmalnik-Brown R, Mazmanian SK (2019) Human gut microbiota from autism spectrum disorder promote behevioral symptoms in mice. Cell 177(6):1600–1618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Yarandi SS, Peterson DA, Treisman GJ, Moran TH, Pasricha PJ (2016) Modulatory effects of gut microbiota on the central nervous system: how gut could play a role in neuropsychiatric health and diseases. J Neurogastroenterol Motil 22(2):201–212

    Article  PubMed  PubMed Central  Google Scholar 

  39. Bauman ML (2010) Medical comorbidities in autism: challenges to diagnosis and treatment. Neurotherapeutics 7(3):320–327

    Article  PubMed  PubMed Central  Google Scholar 

  40. Stuart MJ, Singhal G, Baune BT (2015) Systematic review of the neurobiological relevance of chemokines to psychiatric disorders. Front Cell Neurosci 9:357

    PubMed  PubMed Central  Google Scholar 

  41. Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM (2013) Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J Biol Psychiatry 14(7):528–538

    Article  PubMed  Google Scholar 

  42. Ashwood P, Nguyen DV, Hessl D, Hagerman RJ, Tassone F (2010) Plasma cytokine profiles in Fragile X subjects: is there a role for cytokines in the pathogenesis? Brain Behav Immun 24(6):898–902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Manzardo AM, Henkhaus R, Dhillon S, Butler MG (2012) Plasma cytokine levels in children with autistic disorder and unrelated siblings. Int J Dev Neurosci 30(2):121–127

    Article  PubMed  CAS  Google Scholar 

  44. Shen Y, Ou J, Liu M, Shi L, Li Y, Xiao L, Dong H, Zhang F, Xia K, Zhao J (2016) Altered plasma levels of chemokines in autism and their association with social behaviors. Psychiatry Res 244(30):300–305

    Article  PubMed  CAS  Google Scholar 

  45. Cartier L, Hartley O, Dubois-Dauphin M, Krause K-H (2005) Chemokine receptors in the central nervous system: role in brain inflammation and neurodegenerative diseases. Brain Res Rev 48(1):16–42

    Article  PubMed  CAS  Google Scholar 

  46. Galimberti D, Schoonenboom N, Scarpini E, Scheltens P (2003) Chemokines in serum and cerebrospinal fluid of Alzheimer’s disease patients. Ann Neurol 53(4):547–548

    Article  PubMed  Google Scholar 

  47. Galimberti D, Schoonenboom N, Scheltens P, Fenoglio C, Bouwman F, Venturelli E, Guidi I, Blankenstein MA, Bresolin N, Scarpini E (2006) Intrathecal chemokine synthesis in mild cognitive impairment and Alzheimer disease. Arch Neurol 63(4):538–543

    Article  PubMed  Google Scholar 

  48. Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Pessah IN, Van de Water J (2011) Associations of impaired behaviors with elevated plasma chemokines in autism spectrum disorders. J Neuroimmunol 232(1–2):196–199

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 81770558) and Xiamen Joint Projects for Major Diseases (No. 3502Z20149031).

Author information

Authors and Affiliations

Authors

Contributions

BSF and JLR co-supervised the project and oversaw the study design. KNC did most of the experiments and wrote the manuscript. YSF participated in the whole experiments and conducted most of the data analysis. YLW assisted with animal behavior tests. LXL assisted with collection of colon tissue and serum samples from mice. HZX and AHZ helped with interpreting the results and editing the paper. JNZ and LNF assisted with donor recruitment and experiment design. All authors read and approved the final version of the paper.

Corresponding authors

Correspondence to Jianlin Ren or Baishan Fang.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the Xiamen University Experimental Animal Center and Zhongshan Hospital of Xiamen University.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Electronic Supplementary Material

ESM 1

(DOCX 635 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Fu, Y., Wang, Y. et al. Therapeutic Effects of the In Vitro Cultured Human Gut Microbiota as Transplants on Altering Gut Microbiota and Improving Symptoms Associated with Autism Spectrum Disorder. Microb Ecol 80, 475–486 (2020). https://doi.org/10.1007/s00248-020-01494-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01494-w

Keywords

Navigation