Skip to main content

Advertisement

Log in

Ecogenomics of the Marine Benthic Filamentous Cyanobacterium Adonisia

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Turfs are among the major benthic components of reef systems worldwide. The nearly complete genome sequences, basic physiological characteristics, and phylogenomic reconstruction of two phycobiliprotein-rich filamentous cyanobacteria strains isolated from turf assemblages from the Abrolhos Bank (Brazil) are investigated. Both Adonisia turfae CCMR0081T (= CBAS 745T) and CCMR0082 contain approximately 8 Mbp in genome size and experiments identified that both strains exhibit chromatic acclimation. Whereas CCMR0081T exhibits chromatic acclimation type 3 (CA3) regulating both phycocyanin (PC) and phycoerythrin (PE), CCMR0082 strain exhibits chromatic acclimation type 2 (CA2), in correspondence with genes encoding specific photosensors and regulators for PC and PE. Furthermore, a high number and diversity of secondary metabolite synthesis gene clusters were identified in both genomes, and they were able to grow at high temperatures (28 °C, with scant growth at 30 °C). These characteristics provide insights into their widespread distribution in reef systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Garcia-Pichel F, Belnap J, Neuer S, Schanz F (2003) Estimates of global cyanobacterial biomass and its distribution. 213–227. https://doi.org/10.1127/1864-1318/2003/0109-0213

  2. Luque I, Zabulon G, Contreras A, Houmard J (2001) Convergence of two global transcriptional regulators on nitrogen induction of the stress-acclimation gene nblA in the cyanobacterium Synechococcus sp. PCC 7942. Mol Microbiol 41:937–947. https://doi.org/10.1046/j.1365-2958.2001.02566.x

    Article  PubMed  CAS  Google Scholar 

  3. Muramatsu M, Hihara Y (2012) Acclimation to high-light conditions in cyanobacteria: From gene expression to physiological responses. J Plant Res 125:11–39. https://doi.org/10.1007/s10265-011-0454-6

    Article  PubMed  CAS  Google Scholar 

  4. Watanabe M, Semchonok DA, Webber-Birungi MT, Ehira S, Kondo K, Narikawa R, Ohmori M, Boekema EJ, Ikeuchi M (2014) Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria. Proc Natl Acad Sci U S A 111:2512–2517. https://doi.org/10.1073/pnas.1320599111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294. https://doi.org/10.1038/277293a0

  6. Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a Globally Significant Marine Cyanobacterium. Science 276:1221–1229. https://doi.org/10.1126/science.276.5316.1221

    Article  CAS  Google Scholar 

  7. Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162. https://doi.org/10.1016/j.earscirev.2008.10.005

    Article  CAS  Google Scholar 

  8. Kaplan A, Weiss G, Sukenik A (2016) Cyanobacterial secondary metabolites mediate interspecies-intraspecies communication in the water body: Talking in the water body. Environ Microbiol 18:305–306. https://doi.org/10.1111/1462-2920.12922

    Article  PubMed  Google Scholar 

  9. Micallef ML, D’Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC (2014) Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genomics 21:1–12. https://doi.org/10.1016/j.margen.2014.11.009

    Article  PubMed  Google Scholar 

  10. Nagle D, Paul V (1999) Production of secondary metabolites by filamentous tropical marine cyanobacteria: ecological functions of the compounds. J Phycol 35:1412–1421. https://doi.org/10.1046/j.1529-8817.1999.3561412.x

    Article  CAS  Google Scholar 

  11. Grébert T, Doré H, Partensky F, Farrant GK, Boss ES, Picheral M, Guidi L, Pesant S, Scanlan DJ, Wincker P, Acinas SG, Kehoe DM, Garczarek L (2018) Light color acclimation is a key process in the global ocean distribution of Synechococcus cyanobacteria. Proc Natl Acad Sci U S A 115:E2010–E2019. https://doi.org/10.1073/pnas.1717069115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ho M-Y, Gan F, Shen G, Bryant DA (2017) Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335. II.Characterization of phycobiliproteins produced during acclimation to far-red light. Photosynth Res 131:187–202. https://doi.org/10.1007/s11120-016-0303-5

    Article  PubMed  CAS  Google Scholar 

  13. Hirose Y, Misawa N, Yonekawa C, Nagao N, Watanabe M, Ikeuchi M, Eki T (2017) Characterization of the genuine type 2 chromatic acclimation in the two Geminocystis cyanobacteria. DNA Res 24:387–396. https://doi.org/10.1093/dnares/dsx011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hirose Y, Chihong S, Watanabe M, Yonekawa C, Murata K, Ikeuchi M, Eki T (2019) Diverse Chromatic Acclimation Processes Regulating Phycoerythrocyanin and Rod-Shaped Phycobilisome in Cyanobacteria. Mol Plant 12:715–725. https://doi.org/10.1016/j.molp.2019.02.010

    Article  PubMed  CAS  Google Scholar 

  15. Wiltbank LB, Kehoe DM (2019) Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors. Nat Rev Microbiol 17:37–50. https://doi.org/10.1038/s41579-018-0110-4

    Article  PubMed  CAS  Google Scholar 

  16. Malinsky-Rushansky N, Berman T, Berner T, Yacobi YZ, Dubinsky Z (2002) Physiological characteristics of picophytoplankton, isolated from Lake Kinneret: responses to light and temperature. J Plankton Res 24:1173–1183. https://doi.org/10.1093/plankt/24.11.1173

    Article  CAS  Google Scholar 

  17. Ungerer J, Lin P-C, Chen H-Y, Pakrasi HB (2018) Adjustments to Photosystem Stoichiometry and Electron Transfer Proteins Are Key to the Remarkably Fast Growth of the Cyanobacterium Synechococcus elongatus UTEX 2973. mBio 9. https://doi.org/10.1128/mBio.02327-17

  18. Cheung MY, Liang S, Lee J (2013) Toxin-producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. J Microbiol 51:1–10. https://doi.org/10.1007/s12275-013-2549-3

    Article  PubMed  CAS  Google Scholar 

  19. Engene N, Rottacker EC, Kastovsky J, Byrum T, Choi H, Ellisman MH, Komarek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov., tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171–1178. https://doi.org/10.1099/ijs.0.033761-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leao T, Castelão G, Korobeynikov A, Monroe EA, Podell S, Glukhov E, Allen EE, Gerwick WH, Gerwick L (2017) Comparative genomics uncovers the prolific and distinctive metabolic potential of the cyanobacterial genus Moorea. Proc Natl Acad Sci U S A 114:3198–3203. https://doi.org/10.1073/pnas.1618556114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:787–793. https://doi.org/10.1016/j.copbio.2010.09.019

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Afonso TB, Costa MS, Rezende de Castro R, Freitas S, Silva A, Schneider MPC, Martins R, Leão PN (2016) Bartolosides E-K from a Marine Coccoid Cyanobacterium. J Nat Prod 79:2504–2513. https://doi.org/10.1021/acs.jnatprod.6b00351

    Article  PubMed  CAS  Google Scholar 

  23. Burja A, Banaigs B, Abou-Mansour E, Burgess J, Wright P (2001) 832 Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57:9347–9377. https://doi.org/10.1016/S0040-4020(01)00931-0

    Article  CAS  Google Scholar 

  24. Chang Z, Sitachitta N, Rossi JV, Roberts MA, Flatt PM, Jia J, Sherman DH, Gerwick WH (2004) Biosynthetic pathway and gene cluster analysis of curacin A, an antitubulin natural product from the tropical marine cyanobacterium Lyngbya majuscula. J Nat Prod 67:1356–1367. https://doi.org/10.1021/np0499261

    Article  PubMed  CAS  Google Scholar 

  25. Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH (2004) Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol 11:817–833. https://doi.org/10.1016/j.chembiol.2004.03.030

    Article  PubMed  CAS  Google Scholar 

  26. Gu L, Wang B, Kulkarni A, Geders TW, Grindberg RV, Gerwick L, Håkansson K, Wipf P, Smith JL, Gerwick WH, Sherman DH (2009) Metamorphic enzyme assembly in polyketide diversification. Nature 459:731–735. https://doi.org/10.1038/nature07870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gunasekera SP, Imperial L, Garst C, Ratnayake R, Dang LH, Paul VJ, Luesch H (2016) Caldoramide, a modified pentapeptide from the marine cyanobacterium Caldora penicillata. J Nat Prod 79:1867–1871. https://doi.org/10.1021/acs.jnatprod.6b00203

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Jones AC, Monroe EA, Podell S, Hess WR, Klages S, Esquenazi E, Niessen S, Hoover H, Rothmann M, Lasken RS, Yates JR, Reinhardt R, Kube M, Burkart MD, Allen EE, Dorrestein PC, Gerwick WH, Gerwick L (2011) Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc Natl Acad Sci U S A 108:8815–8820. https://doi.org/10.1073/pnas.1101137108

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kleigrewe K, Gerwick L, Sherman DH, Gerwick WH (2016) Unique marine derived cyanobacterial biosynthetic genes for chemical diversity. Nat Prod Rep 33:348–364. https://doi.org/10.1039/C5NP00097A

    Article  PubMed  CAS  Google Scholar 

  30. Mevers E, Byrum T, Gerwick WH (2013) Parguerene and precarriebowmide, two classes of lipopeptides from the marine cyanobacterium Moorea producens. J Nat Prod 76:1810–1814. https://doi.org/10.1021/np400347f

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Al-Awadhi FH, Law BK, Paul VJ, Luesch H (2017) Grassystatins D-F, potent aspartic protease inhibitors from marine cyanobacteria as potential antimetastatic agents targeting invasive breast cancer. J Nat Prod 80:2969–2986. https://doi.org/10.1021/acs.jnatprod.7b00551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Al-Awadhi FH, Salvador LA, Law BK, Paul VJ, Luesch H (2017) Kempopeptin C, a novel marine-derived serine protease inhibitor targeting invasive breast cancer. Mar Drugs 15:290. https://doi.org/10.3390/md15090290

    Article  PubMed Central  CAS  Google Scholar 

  33. Wang M, Zhang J, He S, Yan X (2017) A Review Study on Macrolides Isolated from Cyanobacteria. Mar Drugs 15. https://doi.org/10.3390/md15050126

  34. Dittmann E, Fewer DP, Neilan BA (2013) Cyanobacterial toxins: biosynthetic routes and evolutionary roots. FEMS Microbiol Rev 37:23–43. https://doi.org/10.1111/j.1574-6976.2012.12000.x

    Article  PubMed  CAS  Google Scholar 

  35. Welker M, von Döhren H (2006) Cyanobacterial peptides - nature’s own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–563. https://doi.org/10.1111/j.1574-6976.2006.00022.x

    Article  PubMed  CAS  Google Scholar 

  36. Sweet MJ, Bythell JC, Nugues MM (2013) Algae as Reservoirs for Coral Pathogens. PLoS One 8. https://doi.org/10.1371/journal.pone.0069717

  37. Walter JM, Tschoeke DA, Meirelles PM, de Oliveira L, Leomil L, Tenório M, Valle R, Salomon PS, Thompson CC, Thompson FL (2016) Taxonomic and Functional Metagenomic Signature of Turfs in the Abrolhos Reef System (Brazil). PLoS One 11:e0161168. https://doi.org/10.1371/journal.pone.0161168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Wild C, Jantzen C, Kremb SG (2014) Turf algae-mediated coral damage in coastal reefs of Belize, Central America. Peer J 2:e571. https://doi.org/10.7717/peerj.571

    Article  PubMed  Google Scholar 

  39. Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol 6:e54. https://doi.org/10.1371/journal.pbio.0060054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Barott KL, Rohwer FL (2012) Unseen players shape benthic competition on coral reefs. Trends Microbiol 20:621–628. https://doi.org/10.1016/j.tim.2012.08.004

    Article  PubMed  CAS  Google Scholar 

  41. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the Great Barrier Reef. Science 323:116–119. https://doi.org/10.1126/science.1165283

    Article  PubMed  CAS  Google Scholar 

  42. Dinsdale EA, Pantos O, Smriga S, Edwards RA, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin SA, Thurber RV, Willis BL, Azam F, Knowlton N, Rohwer F (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS One 3. https://doi.org/10.1371/journal.pone.0001584

  43. Dinsdale EA, Rohwer F (2011) Fish or Germs? Microbial Dynamics Associated with Changing Trophic Structures on Coral Reefs. In: Dubinsky Z, Stambler N (eds) Coral Reefs: An Ecosystem in Transition. Springer Netherlands, Dordrecht, pp 231–240

    Chapter  Google Scholar 

  44. Jackson JB, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637. https://doi.org/10.1126/science.1059199

    Article  PubMed  CAS  Google Scholar 

  45. Silveira CB, Cavalcanti GS, Walter JM, Silva-Lima AW, Dinsdale EA, Bourne DG, Thompson CC, Thompson FL (2017) Microbial processes driving coral reef organic carbon flow. FEMS Microbiol Rev 41:575–595. https://doi.org/10.1093/femsre/fux018

    Article  PubMed  CAS  Google Scholar 

  46. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239. https://doi.org/10.1139/m62-029

    Article  PubMed  CAS  Google Scholar 

  47. Guillard RRL (1975) Culture of phytoplankton for feeding marine inverterbrates. In: Smith WL, Chanley MH (eds) Culture of Marine Invertebrate Animals. Plenum Press, New York, NY, pp 26–60

    Google Scholar 

  48. Ferris MJ, Hirsch CF (1991) Method for isolation and purification of cyanobacteria. Appl Environ Microbiol 57(5):1448–1452.7

    Article  CAS  Google Scholar 

  49. Paul R, Jinkerson RE, Buss K, Steel J, Mohr R, Hess WR, Chen M, Fromme P (2014) Draft genome sequence of the filamentous cyanobacterium Leptolyngbya sp. strain Heron Island J, exhibiting chromatic acclimation. Genome Announc 2(1):e01166–e01113. https://doi.org/10.1128/genomeA.01166-13

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tenório MMB, Le Borgne R, Rodier M, Neveux J (2005) The impact of terrigeneous inputs on the Bay of Ouinné (New Caledonia) phytoplankton communities: A spectrofluorometric and microscopic approach. Estuar Coast Shelf Sci 64:531–545. https://doi.org/10.1016/j.ecss.2005.02.030

    Article  Google Scholar 

  51. Bennett A, Bogorad L (1973) Complementary chromatic adaption in a filamentous blue-green alga. J Cell Biol 58:419–435

    Article  CAS  Google Scholar 

  52. Bryant DA, Guglielmi G, de Marsac NT, Castets AM, Cohen-Bazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123:113–127. https://doi.org/10.1007/BF00446810

    Article  CAS  Google Scholar 

  53. Wilson ST, Böttjer D, Church MJ, Karl DM (2012) Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl Environ Microbiol 78:6516–6523. https://doi.org/10.1128/AEM.01146-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  55. Gordon, A, Hannon, GJ (2010) FASTX-Toolkit. Available: http://hannonlab.cshl.edu/fastx_toolkit/index.html

  56. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics (Oxford, England) 27:863–864. https://doi.org/10.1093/bioinformatics/btr026

    Article  CAS  Google Scholar 

  57. Zerbino DR, Birney E (2008) Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829. https://doi.org/10.1101/gr.074492.107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Dick GJ, Andersson AF, Baker BJ, Simmons SL, Thomas BC, Yelton AP, Banfield JF (2009) Community-wide analysis of microbial genome sequence signatures. Genome Biol 10:R85. https://doi.org/10.1186/gb-2009-10-8-r85

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cornet L, Meunier L, Vlierberghe MV, Léonard RR, Durieu B, Lara Y, Misztak A, Sirjacobs D, Javaux EJ, Philippe H, Wilmotte A, Baurain D (2018) Consensus assessment of the contamination level of publicly available cyanobacterial genomes. PLoS One 13:e0200323. https://doi.org/10.1371/journal.pone.0200323

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Bonfield JK, Whitwham A (2010) Gap5 - editing the billion fragment sequence assembly. Bioinformatics 26:1699–1703. https://doi.org/10.1093/bioinformatics/btq268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol 19:455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: Quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. https://doi.org/10.1093/bioinformatics/btt086

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. https://doi.org/10.1101/gr.186072.114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Seemann T (2014) Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  Google Scholar 

  65. Hyatt D, Chen G-L, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lagesen K, Hallin P, Rødland EA, Staerfeldt H-H, Rognes T, Ussery DW (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. https://doi.org/10.1093/nar/gkm160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57. https://doi.org/10.1093/nar/gkw413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Edelstein M, Gehrke F, Hopf S, Jehl M, Oswald A, Rattei T (2003) Genome skew, version 1.0. Technische Universitaet Muenchen, Genome Oriented Bioinformatics. Available at: http://genskew.csb.univie.ac.at/

  69. Grant JJR, Arantes AS, Stothard P, Carver T, Rutherford K, Berriman M, Rajandream M-A, Barrell B, Parkhill J, Elnitski L, Burhans R, Riemer C, Hardison R, Miller W, Hallin P, Binnewies T, Ussery D, Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A, Rao B, Smirnov S, Sverdlov A, Vasudevan S, Wolf Y, Yin J, Natale D, Benson D, Karsch-Mizrachi I, Lipman D, Ostell J, Sayers E, Altschul S, Madden T, Schäffer A, Zhang J, Zhang Z, Miller W, Lipman D, Stothard P, Wishart D, Grant JJR, Stothard P, Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S, Marra M, Alikhan N-F, Petty N, Zakour N B, Beatson S (2012) Comparing thousands of circular genomes using the CGView Comparison Tool. BMC Genomics 13:202. https://doi.org/10.1186/1471-2164-13-202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pruesse E, Peplies J, Glöckner FO (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. https://doi.org/10.1093/bioinformatics/bts252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219

    Article  PubMed  CAS  Google Scholar 

  73. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

    Article  PubMed  CAS  Google Scholar 

  75. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577. https://doi.org/10.1080/10635150701472164

    Article  PubMed  CAS  Google Scholar 

  76. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285. https://doi.org/10.1093/oxfordjournals.molbev.a040317

    Article  PubMed  CAS  Google Scholar 

  78. Shih PM, Wu D, Latifi A, Axen SD, Fewer DP, Talla E, Calteau A, Cai F, Tandeau de Marsac N, Rippka R, Herdman M, Sivonen K, Coursin T, Laurent T, Goodwin L, Nolan M, Davenport KW, Han CS, Rubin EM, Eisen JA, Woyke T, Gugger M, Kerfeld CA (2013) Improving the coverage of the cyanobacterial phylum using diversity-driven genome sequencing. Proc Natl Acad Sci U S A 110:1053–1058. https://doi.org/10.1073/pnas.1217107110

    Article  PubMed  Google Scholar 

  79. Wu M, Eisen JA (2008) A simple, fast, and accurate method of phylogenomic inference. Genome Biol 9:R151. https://doi.org/10.1186/gb-2008-9-10-r151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Komárek J, Kaštovský J, Mareš J, Johansen J (2014) Taxonomic classification of cyanoprokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 295–335

  81. Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28:1033–1034. https://doi.org/10.1093/bioinformatics/bts079

    Article  PubMed  CAS  Google Scholar 

  82. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. https://doi.org/10.1093/bioinformatics/btl446

    Article  PubMed  CAS  Google Scholar 

  84. Rambaut A (2012) FigTree v.1.4.2: tree figure drawing tool

  85. Konstantinidis KT, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2572. https://doi.org/10.1073/pnas.0409727102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Karlin S, Mrázek J, Campbell AM (1997) Compositional biases of bacterial genomes and evolutionary implications. J Bacteriol 179:3899–3913. https://doi.org/10.1128/jb.179.12.3899-3913.1997

  87. Auch AF, von Jan M, Klenk H-P, Göker M (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2:117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  88. Auch AF, Klenk H-P, Göker M (2010) Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2:142–148. https://doi.org/10.4056/sigs.541628

    Article  PubMed  PubMed Central  Google Scholar 

  89. Meier-Kolthoff JP, Auch AF, Klenk H-P, Göker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC bioinformatics 14:60. https://doi.org/10.1186/1471-2105-14-60

    Article  PubMed  PubMed Central  Google Scholar 

  90. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  91. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226

    Article  PubMed  CAS  Google Scholar 

  93. Buchfink B, Xie C, Huson DH (2014) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60. https://doi.org/10.1038/nmeth.3176

    Article  PubMed  CAS  Google Scholar 

  94. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH (2015) antiSMASH 3.0--a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:237–243. https://doi.org/10.1093/nar/gkv437

    Article  CAS  Google Scholar 

  95. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923.Fast

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV (2012) Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science 335:587–590. https://doi.org/10.1126/science.1212665

    Article  PubMed  CAS  Google Scholar 

  97. dos Reis VM, Karez CS, Mariath R, de Moraes FC, de Carvalho RT, Brasileiro PS, da Bahia RG, da Lotufo TMC, Ramalho LV, de Moura RL, Francini-Filho RB, Pereira-Filho GH, Thompson FL, Bastos AC, Salgado LT, Amado-Filho GM (2016) Carbonate Production by Benthic Communities on Shallow Coralgal Reefs of Abrolhos Bank, Brazil. PLoS One 11:e0154417. https://doi.org/10.1371/journal.pone.0154417

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gutu A, Kehoe DM (2012) Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol Plant 5:1–13. https://doi.org/10.1093/mp/ssr054

    Article  PubMed  CAS  Google Scholar 

  99. Tandeau de Marsac N (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91

    Article  CAS  Google Scholar 

  100. Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC (2017) Ecogenomics and Taxonomy of Cyanobacteria Phylum. Front Microbiol 8:2132. https://doi.org/10.3389/fmicb.2017.02132

    Article  PubMed  PubMed Central  Google Scholar 

  101. Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL, Pereira-Filho GH, Bastos AC, Abrantes DP, Ferreira CM, Gibran FZ, Güth AZ, Sumida PYG, Oliveira NL, Kaufman L,Minte-Vera CV, Moura RL (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: inferences on natural and anthropogenic drivers. PLoS One 8: e54260. https://doi.org/10.1371/journal.pone.0054260

  102. Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik B, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90. https://doi.org/10.1186/gb-2008-9-5-r90

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Dagan T, Roettger M, Stucken K, Landan G, Koch R, Major P, Gould SB, Goremykin VV, Rippka R, De Marsac NT, Gugger M, Lockhart PJ, Allen JF, Brune I, Maus I, Pühler A, Martin WF (2013) Genomes of stigonematalean cyanobacteria (subsection V) and the evolution of oxygenic photosynthesis from prokaryotes to plastids. Genome Biology and Evolution 5:31–44. https://doi.org/10.1093/gbe/evs117

    Article  PubMed  CAS  Google Scholar 

  104. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, Van de Peer Y, Vandamme P, Thompson FL, Swings J (2005) Re-evaluating prokaryotic species. Nat Rev Microbiol 3:733–739. https://doi.org/10.1038/nrmicro1236

    Article  PubMed  CAS  Google Scholar 

  105. Han K, Li Z, Peng R, Zhu L, Zhou T, Wang L, Li S, Zhang X, Hu W, Wu Z, Qin N, Li Y (2013) Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 3:1–7. https://doi.org/10.1038/srep02101

    Article  Google Scholar 

  106. Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L (2012) Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J Bacteriol 194:3012–3013. https://doi.org/10.1128/JB.00397-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter F-J, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289. https://doi.org/10.1038/nbt1354

    Article  PubMed  CAS  Google Scholar 

  108. Thompson CC, Silva GGZ, Vieira NM, Edwards R, Vicente ACP, Thompson FL (2013) Genomic taxonomy of the genus Prochlorococcus. Microb Ecol 66:752–762. https://doi.org/10.1007/s00248-013-0270-8

    Article  PubMed  Google Scholar 

  109. Thompson CC, Chimetto L, Edwards RA, Swings J, Stackebrandt E, Thompson FL (2013) Microbial genomic taxonomy. BMC Genomics 14:913. https://doi.org/10.1186/1471-2164-14-913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Hirose Y, Shimada T, Narikawa R, Katayama M, Ikeuchi M (2008) Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc Natl Acad Sci U S A 105:9528–9533. https://doi.org/10.1073/pnas.0801826105

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hirose Y, Narikawa R, Katayama M, Ikeuchi M (2010) Cyanobacteriochrome CcaS regulates phycoerythrin accumulation in Nostoc punctiforme, a group II chromatic adapter. Proc Natl Acad Sci U S A 107:8854–8859. https://doi.org/10.1073/pnas.1000177107

    Article  PubMed  PubMed Central  Google Scholar 

  112. Bryant DA (1981) The photoregulated expression ofmultiple phycocyanin species: a general mechanism for the control of phycocyanin synthesis is chromatically adapting cyanobacteria. Eur J Biochem 119(2):425–429. https://doi.org/10.1111/j.1432-1033.1981.tb05625.x

  113. Mazel D, Houmard J, deMarsac NT (1988) A multigene family in Calothrix sp. PCC 7601 encodes phycocyanin, the major component of the cyanobacterial light-harvesting antenna. Mol Gen Genet MGG 211(2):296–304. https://doi.org/10.1007/BF00330607

  114. Bussell AN, Kehoe DM (2013) Control of a four-color sensing photoreceptor by a two-color sensing photoreceptor reveals complex light regulation in cyanobacteria. PNAS 110:12834–12839. https://doi.org/10.1073/pnas.1303371110

    Article  PubMed  Google Scholar 

  115. Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345:1312–1317. https://doi.org/10.1126/science.1256963

    Article  PubMed  CAS  Google Scholar 

  116. Gan F, Shen G, Bryant D (2014) Occurrence of Far-Red light photoacclimation (FaRLiP) in diverse Cyanobacteria. Life 5:4–24. https://doi.org/10.3390/life5010004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Silva-Lima AW, Walter JM, Garcia GD, Ramires N, Ank G, Meirelles PM, Nobrega AF, Siva-Neto ID, Moura RL, Salomon PS, Thompson CC, Thompson FL (2015) Multiple Symbiodinium strains are hosted by the Brazilian endemic corals Mussismilia spp. Microb Ecol 70:301–310. https://doi.org/10.1007/s00248-015-0573-z

    Article  PubMed  Google Scholar 

  118. Richardson LL, Miller AW, Broderick E, Kaczmarsky L, Gantar M, Stanić D, Sekar R (2009) Sulfide, microcystin, and the etiology of black band disease. Dis Aquat Org 87:79–90. https://doi.org/10.3354/dao02083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391. https://doi.org/10.1039/c2np00075j

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Cruz-Rivera E, Paul VJ (2007) Chemical deterrence of a cyanobacterial metabolite against generalized and specialized grazers. J Chem Ecol 33:213–217. https://doi.org/10.1007/s10886-006-9212-y

    Article  PubMed  CAS  Google Scholar 

  121. Paz-Yepes J, Brahamsha B, Palenik B (2013) Role of a microcin-C-like biosynthetic gene cluster in allelopathic interactions in marine Synechococcus. Proc Natl Acad Sci U S A 110:12030–12035. https://doi.org/10.1073/pnas.1306260110

    Article  PubMed  PubMed Central  Google Scholar 

  122. Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJA, Smith JE, Rohwer FL (2012) Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc Biol Sci 279:1655–1664. https://doi.org/10.1098/rspb.2011.2155

    Article  PubMed  Google Scholar 

  123. Charpy L, Casareto BE, Langlade MJ, Suzuki Y (2012) Cyanobacteria in coral reef ecosystems: a review. J Mar Biotechnol 2012:1–9. https://www.hindawi.com/journals/jmb/2012/259571/

    Google Scholar 

  124. Gregg A, Hatay M, Haas A, Robinett N, Barott K, Vermeij M, Marhaver K, Meirelles P, Thompson F, Rohwer F (2013) Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates. Peer J 1:e107. https://doi.org/10.7717/peerj.107

    Article  PubMed  CAS  Google Scholar 

  125. Ribeiro FV, Sá JA, Fistarol GO, Salomon PS, Pereira RC, Souza MLAM, Neves LM, Amado-Filho GM, Francini-Filho RB, Salgado LT, Bastos AC, Pereira-Filho GH, Moraes FC, Moura RL (2018) Long-term effects of competition and environmental drivers on the growth of the endangered coral Mussismilia braziliensis (Verril, 1867). Peer J 6:e5419. https://doi.org/10.7717/peerj.5419

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The sequence data selected from the GEBA database (Accession number 2509601039) and used in this paper was produced by the US Department of Energy Joint Genome Institute (http://www.jgi.doe.gov/) in collaboration with the user community.

Funding

The authors acknowledge CNPq, CAPES and FAPERJ for their financial support for this study. JMW thank CNPq (207751-2014/5) and CAPES for the fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiano L. Thompson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Field Study Permissions

The following information was supplied relating to field study approvals: sampling permit SISBIO no. 27147-2 issue by the Ministry of Environment Institute Chico Mendes (ICMBio).

Electronic Supplementary Material

ESM 1

(DOCX 6428 kb)

ESM 2

(XLSX 8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walter, J.M., Coutinho, F.H., Leomil, L. et al. Ecogenomics of the Marine Benthic Filamentous Cyanobacterium Adonisia. Microb Ecol 80, 249–265 (2020). https://doi.org/10.1007/s00248-019-01480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01480-x

Keywords

Navigation