Skip to main content

Advertisement

Log in

Common and Species-Specific Effects of Phosphate on Marine Microalgae Fatty Acids Shape Their Function in Phytoplankton Trophic Ecology

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The use of fatty acids (FA) to infer structure of phytoplankton assemblages and as indicators of microalgae nutritional value is acquiring relevance in modern phytoplankton ecology and new advances concerning factors influencing FA variability among microalgae are demanded. In this regard, the relationship between phosphorus and FA remains particularly little studied in marine phytoplankton. In the present study, we focus on phosphate effects on FA from a diversified set of marine microalgae and provide new insights into the applicability of FA in phytoplankton trophic ecology. Phosphate deprivation mainly induced monounsaturated FA production in eight out of nine microalgae and their changes were species-specific, with palmitoleic acid exhibiting extreme variation and discriminating between haptophyte classes. The important phosphate-induced and interspecific variability found for oleic acid was perceived as a concern for the current application of this FA as a trophic position indicator in grazers. Chloroplast C-16 and C-18 polyunsaturated FA were more affected by phosphate than C-20 and C-22 highly unsaturated FA (HUFA). The relative stability of stearidonic acid to phosphate in cryptophytes and haptophytes pinpointed this FA as a suited marker for both microalgae groups. Taken all species together, phosphate deprivation and taxonomy accounted for 20.8 and 50.7% of total FA variation, respectively. HUFA were minimally affected by phosphate indicating their suitability as indicators of phytoplankton trophic value. The asymptotic relationship between HUFA and phosphorus cell content suggested mineral composition (phosphorus) could be more important than HUFA content as attribute of marine microalgae nutritional value at the species level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J. Exp. Mar. Biol. Ecol. 128:219–240

    Article  CAS  Google Scholar 

  2. Mourente G, Lubián LM, Odriozola JM (1990) Total fatty acid composition as a taxonomic index of some marine microalgae used as food in marine aquaculture. Hydrobiologia 203:147–154

    Article  CAS  Google Scholar 

  3. Viso AC, Marty JC (1992) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  Google Scholar 

  4. Renaud SM, Thin LV, Parry DL (1999) The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 170:147–159

    Article  CAS  Google Scholar 

  5. Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 11:124–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galloway AWE, Winder M (2015) Partitioning the relative importance of phylogeny and environmental conditions on phytoplankton fatty acids. PLoS One 10(6):e0130053. doi:10.1371/journal.pone.0130053

    Article  PubMed  PubMed Central  Google Scholar 

  7. Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl. Microbiol. Biotechnol. 91:905–915

    Article  CAS  PubMed  Google Scholar 

  8. Bellou S, Baeshen MN, Elazzazy AE, Aggeli D, Sayegh F, Aggelis G (2014) Microalgal lipids biochemistry and biotechnological perspectives. Biotechnol. Adv. 32:1476–1493

    Article  CAS  PubMed  Google Scholar 

  9. Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340

    Article  PubMed  Google Scholar 

  10. Parrish CC (2013) Lipids in marine ecosystems. ISRN Oceanogr. 2013:1–16

    Article  Google Scholar 

  11. Taipale S, Strandberg U, Peltomaa E, Galloway AWE, Ojala A, Brett M (2013) Fatty acid composition as biomarkers of freshwater microalgae: analysis of 37 strains of microalgae in 22 genera and in seven classes. Aquat. Microb. Ecol. 71:165–178

    Article  Google Scholar 

  12. Strandberg U, Taipale SJ, Hiltunen M, Galloway AWE, Brett MT, Kankaala P (2015) Inferring phytoplankton community composition with a fatty acid mixing model. Ecosphere 6:1–18. doi:10.1890/ES14-00382.1

    Article  Google Scholar 

  13. Budge SM, Devred E, Forget MH, Stuart V, Trzcinski MK, Sathyendranath S, Platt T (2014) Estimating concentrations of essential omega-3 fatty acids in the ocean: supply and demand. ICES J. Mar. Sci. 71:1885–1893

    Article  Google Scholar 

  14. Sprague M, Dick JR, Tocher DR (2016) Impact of sustainable feeds on omega-3 long-chain fatty acid levels in farmed Atlantic salmon, 2006–2015. Sci. Rep.-UK 6:21892. doi:10.1038/srep21892

    Article  CAS  Google Scholar 

  15. Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Brett MT, Kainz MJ (eds) Arts MT. Lipids in Aquatic Ecosystems, Springer Dordrecht Heidelberg London New York, pp. 1–24

    Google Scholar 

  16. Reitan K, Rainuzzo JR, Yngvar O (1994) Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol. 30:972–979

    Article  CAS  Google Scholar 

  17. Fields MW, Hise A, Lohman EJ, Bell T, Gardner RD, Corredor L, Moll K, Peyton BM, Characklis GW, Gerlach R (2014) Sources and resources: importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl. Microbiol. Biotechnol. 98:4805–4816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Simionato D, Block MA, La Rocca N, Jouhet J, Maréchal E, Finazzi G, Morosinott T (2013) The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus. Eukaryot. Cell 12:665–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kamalanathan M, Pierangelini M, Shearman LA, Gleadow R. Beardall J (2016) Impacts of nitrogen and phosphorus starvation on the physiology of Chlamydomonas reinhardtii. J. Appl. Phycol. 28:1509–1520.

  20. Lu N, Wei D, Chen F, Yang ST (2013) Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation. Process Biochem. 48:605–613

    Article  CAS  Google Scholar 

  21. Abida H, Dolch LJ, Meï C, Villanova V, Conte M, Block MA, Finazzi G, Bastien O, Tirichine L, Bowler C, Rébeillé F, Petroutsos D, Jouhet J, Maréchal E (2015) Membrane glycerolipid remodelling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167:118–136

    Article  CAS  PubMed  Google Scholar 

  22. Siron R, Giusti G, Berland B (1989) Changes in the fatty acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar. Ecol. Prog. Ser. 55:95–100

    Article  CAS  Google Scholar 

  23. Khozin-Goldberg I, Cohen Z (2006) The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67:696–701

    Article  CAS  PubMed  Google Scholar 

  24. Daase M, Søreide JE, Martynova D (2011) Effects of food quality on naupliar development in Calanus glacialis at subzero temperatures. Mar. Ecol. Prog. Ser. 429:111–124

    Article  Google Scholar 

  25. Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J. Appl. Phycol. 25:311–318

    Article  CAS  Google Scholar 

  26. Bi R, Arndt C, Sommer U (2014) Linking elements to biochemicals: effects of nutrient supply ratios and growth rates on fatty acid composition of phytoplankton species. J. Phycol. 50:117–130

    Article  CAS  PubMed  Google Scholar 

  27. Rasdi NW, Qin JG (2015) Effect of N:P ratio on growth and chemical composition of Nannochloropsis oculata and Tisochrysis lutea. J. Appl. Phycol. 27:2221–2230

    Article  CAS  Google Scholar 

  28. Hu HH, Gao KS (2006) Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett 28:987–992

    Article  CAS  PubMed  Google Scholar 

  29. Spijkerman E, Wacker A (2011) Interactions between P-limitation and different C conditions on the fatty acid composition of an extremophile microalga. Extremophiles 15:597–609

    Article  CAS  PubMed  Google Scholar 

  30. Piepho M, Arts MT, Wacker A (2012) Species-specific variation in fatty acid concentrations of four phytoplankton species: does phosphorus supply influence the effect of light intensity or temperature? J. Phycol. 48:64–73

    Article  CAS  PubMed  Google Scholar 

  31. Wacker A, Piepho M, Spijkerman E (2015) Photosynthetic and fatty acid acclimation of four phytoplankton species in response to light intensity and phosphorus availability. Eur. J. Phycol. 50:288–300

    Article  CAS  Google Scholar 

  32. Villar-Argaiz M, Medina-Sanchez JM, Bullejos FJ, Delgado-Molina JA, Perez OR, Navarro JC, Carrillo P (2009) UV radiation and phosphorus interact to influence the biochemical composition of phytoplankton. Freshw. Biol. 54:1233–1245

    Article  CAS  Google Scholar 

  33. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y, Hohmann-Marriott MF, Vadstein O, Bones AM (2013) Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar. Drugs 11:4662–4697

    Article  PubMed  PubMed Central  Google Scholar 

  34. Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77

    Article  PubMed  Google Scholar 

  35. Müller-Navarra DC (2008) Food web paradigms: the biochemical view on trophic interactions. Int. Rev. Hydrobiol. 93:489–505

    Article  Google Scholar 

  36. Taipale SJ, Vuorioc K, Strandberg U, Kahilainen KK, Järvinen M, Hiltunen M, Peltomaa E, Kankaala P (2016) Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environ. Int. 96:156–166

    Article  CAS  PubMed  Google Scholar 

  37. Elser JJ, Bracken MES, Cleland EC, Gruner DS, Harpole WS, Hillebrank H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10:1135–1142

    Article  PubMed  Google Scholar 

  38. Lin S, Litaker RW, Sunda WG (2016) Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52:10–36

    Article  CAS  PubMed  Google Scholar 

  39. Duhamel S, Björkman KM, Doggett JK, Karl DM (2014) Microbial response to enhanced phosphorus cycling in the North Pacific Subtropical Gyre. Mar. Ecol. Prog. Ser. 504:43–58

    Article  CAS  Google Scholar 

  40. Van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblizek M, Lomas MW, Mincer TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72

    Article  CAS  PubMed  Google Scholar 

  41. Cañavate JP, Armada I, Hachero-Cruzado I (2017) Interspecific variability in phosphorus-induced lipid remodelling among marine eukaryotic phytoplankton. New Phytol. 213:700–713

    Article  PubMed  Google Scholar 

  42. Guiry MD, Guiry GM, Morrison L, Rindi F, Valenzuela-Miranda S, Matthieson AC, Parker BC, Langangen A, John DM, Bárbara I, Carter CF, Kuipers P, Garbary DJ (2014) AlgaeBase: an on-line resource for algae. Cryptogamie, Algol. 35(2):105–115

    Article  Google Scholar 

  43. Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum Book Publ. Corp, New York, pp. 29–60

    Chapter  Google Scholar 

  44. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497–509

    CAS  PubMed  Google Scholar 

  45. Christie WW (2003) Lipid analysis: isolation, separation, identification and structural analysis of lipids. (Christie WW ed.) The Oily Press: Bridgewater, England.

  46. Clarke KR, Gorley RN (2006) PRIMER v6: User manual/tutorial. PRIMER-E, Plymouth, p. 192

    Google Scholar 

  47. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117–143

    Article  Google Scholar 

  48. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

    Article  Google Scholar 

  49. Chia MA, Lombardi AT, da Graca M, Melão G, Parrish CC (2013) Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquat. Toxicol. 128-129:171–182

    Article  CAS  PubMed  Google Scholar 

  50. Yu SJ, Shen XF, Ge HQ, Zheng H, Chu FF, Hu H, Zeng RJ (2016) Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum. Appl. Microbiol. Biotechnol. 100:6927–6934

    Article  CAS  PubMed  Google Scholar 

  51. Yang ZK, Zheng JW, Niu YF, Yang WD, Liu JS, Li HY (2014) Systems-level analysis of the metabolic responses of the diatom Phaeodactylum tricornutum to phosphorus stress. Environ. Microbiol. 16(6):1793–1807

    Article  CAS  PubMed  Google Scholar 

  52. Wang HT, Yao CH, Liu YN, Meng YY, Wang WL, Cao XP, Xue S (2015) Identification of fatty acid biomarkers for quantification of neutral lipids in marine microalgae Isochrysis zhangjiangensis. J. Appl. Phycol. 27:249–255

    Article  CAS  Google Scholar 

  53. Huang X, Huang Z, Wen W, Yan J (2013) Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol. 25:129–137

    Article  Google Scholar 

  54. Schukat A, Auel H, Teuber L, Lahajnar N, Hagen W (2014) Complex trophic interactions of calanoid copepods in the Benguela upwelling system. J. Sea Res. 85:186–196

    Article  Google Scholar 

  55. Yang G, Li C, Guilini K, Peng Q, Wang Y, Zhang Y, Zhang Y (2016) Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: insights from a combined fatty acid biomarker and stable isotopic approach. Deep-Sea Res 114:55–63

    Article  CAS  Google Scholar 

  56. Klein Breteler WCM, Schogt N, Rampen S (2006) Effect of diatom nutrient limitation on copepod development: role of essential lipids. Mar. Ecol. Prog. Ser. 291:125–133

    Article  Google Scholar 

  57. Khozin-Goldberg I, Boussiba S (2011) Concerns over the reporting of inconsistent data on fatty acid composition for microalgae of the genus Nannochloropsis (Eustigmatophyceae). J. Appl. Phycol. 23:933–934

    Article  Google Scholar 

  58. Ponis E, Parisi G, Le Coz JR, Robert R, Zittelli GC, Tredici MR (2006) Effect of the culture system and culture technique on biochemical characteristics of Pavlova lutheri and its nutritional value for Crassostrea gigas larvae. Aquac. Nutr. 12:322–329

    Article  CAS  Google Scholar 

  59. Cahoon EB, Lindqvist Y, Schneider G, Shanklin J (1997) Redesign of soluble fatty acid desaturases from plants for altered substrate specificity and double bond position. Proc. Natl. Acad. Sci. U. S. A. 94:4872–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nguyen HT, Mishra G, Whittle E, Pidowich MS, Bevan SA, Merlo AO, Walsh TA, Shanklin J (2010) Metabolic engineering of seeds can achieve levels of w-7 fatty acids comparable with the highest levels found in natural plant sources. Plant Physiol. 154:1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huerlimann R, de Nys R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 107:245–257

    Article  CAS  PubMed  Google Scholar 

  62. Renaud SM, Luong-Van Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  63. Tzovenis I, Fountoulaki E, Dolapsakis N, Kotzamanis I, Nengas I, Bitis I, Cladas Y, Economou-Amilli A (2010) Screening for marine nanoplanktic microalgae from Greek coastal lagoons (Ionian Sea) for use in mariculture. J. Appl. Phycol. 21:457–469

    Article  Google Scholar 

  64. James GO, Hocart CH, Hillier W, Chen H, Kordbacheh F, Price GD, Djordjevic MA (2011) Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation. Bioresour. Technol. 102:3343–3351

    Article  CAS  PubMed  Google Scholar 

  65. Roughan PG, Slack CR (1982) Cellular organization of glycerolipid metabolism. Annu. Rev. Plant Physiol. 33:97–132

    Article  CAS  Google Scholar 

  66. Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr. Euk. Ce1l 4:242–252

    Article  CAS  Google Scholar 

  67. Los DA, Mironov KS (2015) Modes of fatty acid desaturation in cyanobacteria: an update. Life 5:554–567

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lee JM, Lee H, Kang S, Park WJ (2016) Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8:23. doi:10.3390/nu8010023

    Article  PubMed Central  Google Scholar 

  69. Dolch LJ, Maréchal E (2015) Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum. Mar. Drugs 13:1317–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Petroutsos D, Amiar S, Abida H, Dolch LJ, Bastien O, Rébeillé F, Jouhet J, Falconet D, Block MA, McFadden GI, Bowler C, Botté C, Maréchal E (2014) Evolution of galactoglycerolipid biosynthetic pathways—from cyanobacteria to primary plastids and from primary to secondary plastids. Prog. Lipid Res. 54:68–85

    Article  CAS  PubMed  Google Scholar 

  71. Dijkman NA, Kromkamp JC (2006) Phospholipid-derived fatty acids as chemotaxonomic markers for phytoplankton: application for inferring phytoplankton composition. Mar. Ecol. Prog. Ser. 324:113–125

    Article  CAS  Google Scholar 

  72. Carvalho CCR, Caramujo MJ (2014) Fatty acids as a tool to understand microbial diversity and their role in food webs of Mediterranean temporary ponds. Molecules 19:5570–5598

    Article  PubMed  Google Scholar 

  73. Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. Ser. 446:1–22

    Article  CAS  Google Scholar 

  74. Armada I, Hachero-Cruzado I, Mazuelos N, Ríos JL, Manchado M, Cañavate JP (2013) Differences in betaine lipids and fatty acids between Pseudoisochrysis paradoxa VLP and Diacronema vlkianum VLP isolates (Haptophyta). Phytochemistry 95:224–233

    Article  CAS  PubMed  Google Scholar 

  75. Gong Y, Guo X, Wan X, Liang Z, Jiang M (2012) Triacylglycerol accumulation and change in fatty acid content of four marine oleaginous microalgae under nutrient limitation and at different culture ages. J. Basic Microb. 53:29–36

    Article  Google Scholar 

  76. Bergé JP, Barnathan G (2005) Fatty acids from lipids of marine organisms: molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biot. 96:49–125

    Google Scholar 

  77. Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63:145–153

    Article  CAS  PubMed  Google Scholar 

  78. Chen YC (2012) The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chem. 131:211–219

    Article  CAS  Google Scholar 

  79. Meng Y, Jiang J, Wang H, Cao X, Xue S, Yang Q, Wang W (2015) The characteristics of TAG and EPA accumulation in Nannochloropsis oceanica IMET1 under different nitrogen supply regimes. Bioresour. Technol. 179:483–489

    Article  CAS  PubMed  Google Scholar 

  80. Xu Z, Yan X, Pei L, Luo Q, Xu J (2008) Changes in fatty acids and sterols during batch growth of Pavlova viridis in photobioreactor. J. Appl. Phycol. 20:237–243

    Article  CAS  Google Scholar 

  81. Durmaz Y, Donato M, Monteiro M, Gouveia L, Nunes ML, Gama Pereira T, Gökpmar S, Bandarra NM (2009) Effect of temperature on a-tocopherol, fatty acid profile, and pigments of Diacronema vlkianum (Haptophyceae). Aquacult. Int. 17:391–399

    Article  CAS  Google Scholar 

  82. Malzahn AM, Aberle N, Clemmesen C (2007) Nutrient limitation of primary producers affects planktivorous fish condition. Limnol. Oceanogr. 52:2062–2071

    Article  CAS  Google Scholar 

  83. Dunstan G, Brown MR, Volkman JK (2005) Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 66:2557–2570

    Article  CAS  PubMed  Google Scholar 

  84. Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202

    Article  Google Scholar 

  85. Sato N, Sonoike K, Tsuzuki M, Kawaguchi A (1996) Photosynthetic characteristics of a mutant of Chlamydomonas reinhardtii impaired in fatty acid desaturation in chloroplasts. Biochim. Biophys. Acta Bioenerg. 1274:112–118

    Article  Google Scholar 

  86. Gladyshev M, Sushchik N, Kolmakova A, Kalachova G, Kravchuk E, Ivanova E, Makhutova O (2007) Seasonal correlations of elemental and n3 PUFA composition of seston and dominant phytoplankton species in a eutrophic Siberian reservoir. Aquat. Ecol. 41:9–23

    Article  CAS  Google Scholar 

  87. Bi R, Arndt C, Sommer U (2012) Stoichiometric responses of phytoplankton species to the interactive effect of nutrient supply ratios and growth rates. J. Phycol. 48:539–549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by projects “Sustainable and environmentally friendly aquaculture for the Atlantic Region of Europe” (SEAFARE), funded by the European Union Atlantic Area 670 Transnational Programme (2007–2013) through grant no 2009-1/123 and EI.AVA.AVA201301.5 (New technologies for aquaculture enhancement and diversification in Andalusia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pedro Cañavate.

Electronic Supplementary Material

Fig. S1

Principal coordinate ordination of studied microalgae arranged according to taxonomy and phosphate nutrition stage of phosphate repletion (PR, solid symbols) and phosphate replenishment following phosphate depletion for 7 d (PDR, empty symbols) and using FA as descriptor variables. (GIF 99 kb)

High resolution image (TIFF 979 kb)

Fig. S2

Principal coordinate analysis for microalgae growth stages in the nine studied species using their fatty acids and main glycerolipids as descriptor variables under phosphate repletion for 3 d (PR-3) and 7 d (PR-7), phosphate depletion for 3 d (PD-3) and 7 d (PD-7), phosphate depletion following PD for 3 d (PDD-3) and 7 d (PDD-7), and phosphate replenishment after PD for 3 d (PDR-3) and 7 d (PDR-7). Glycerolipids included the following lipid classes: diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), diacylglycerol hydroxymethyl-N,N,N-trimethyl-β-alanine (DGTA) and diacylglycerol-carboxyhydroxymethylcholine (DGCC), sulphoquinovosyl-diacylglicerol (SQDG), monogalactosyl-diacylglicerol (MGDG), digalactosyl-diacylglicerol (DGDG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and triglycerides (TG). (GIF 186 kb)

High resolution image (TIFF 3695 kb)

Fig. S3

Mean (±standard deviation) relative variation (%) from phosphate repletion (PR) to phosphate depletion for 14 d (PDD) and from PDD to phosphate replenishment (PDR) in saturated (SAFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids. Same letters denote lack of significance (one-way ANOVA, p > 0.05) among microalgae species. (GIF 2023 kb)

High resolution image (TIFF 1095 kb)

Fig. S4

Mean (±standard deviation) relative variation (%) from phosphate repletion (PR) to phosphate depletion for 14 d (PDD) and from PDD to phosphate replenishment (PDR) in total n3 (n3), total n6 (n6) and the ratio between n3 and n6 (n3/n6) fatty acids. Same letters denote lack of significance (one-way ANOVA, p > 0.05) among microalgae species. (GIF 1481 kb)

High resolution image (TIFF 1160 kb)

Fig. S5

Mean (±standard deviation) content (mg fatty acid g−1 dw) in total C-16, C-18, C-20 and C-22 fatty acids in the studied microalgae under phosphate repletion (PR), phosphate depletion after 7 d (PR) and phosphate depletion after 14 d (PDD). Different letters denote significant differences (one-way ANOVA, p < 0.05) within each microalgae due to phosphate treatment. (GIF 2417 kb)

High resolution image (TIFF 1289 kb)

Fig. S6

Best fitting regression equation and 95% confidence interval of total highly unsaturated fatty acids (HUFA) against phosphorus cell quota in the nine studied microalgae. The proportion of total variance explained by the regression is indicated by r2. (GIF 125 kb)

High resolution image (TIFF 1295 kb)

Fig. S7

Best fitting regression equation and 95% confidence interval of total n3 fatty acids (n3) against phosphorus cell quota in the nine studied microalgae. The proportion of total variance explained by the regression is indicated by r2. (GIF 139 kb)

High resolution image (TIFF 1292 kb)

Fig. S8

Best fitting regression equation and 95% confidence interval of total n6 fatty acids (n6) against phosphorus cell quota in the nine studied microalgae. The proportion of total variance explained by the regression is indicated by r2. (GIF 133 kb)

High resolution image (TIFF 1295 kb)

Table S1

Mean fatty acid content and standard deviation (SD), expressed as mg g−1 dw, of microalgae cultured in phosphate replete medium for 3 d (PR-3) and 7 d (PR-7), phosphate deplete medium for 3 d (PD-3), 7 d (PD-7), 10 d (PD-10) and 14 d (PD-14), and phosphate replenishment after PD-7 for 3 d (PDR-3) and 7 d (PDR-7). Hom denotes homogeneous phosphate groups (p < 0.05; Tukey pos hoc test; n = 6) after one-way ANOVA analysis. Probabilities (p) derived from the two-way ANOVA analysis are provided for each factor (P stage; Age) and their interaction (PxAge). (XLSX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cañavate, J.P., Armada, I. & Hachero-Cruzado, I. Common and Species-Specific Effects of Phosphate on Marine Microalgae Fatty Acids Shape Their Function in Phytoplankton Trophic Ecology. Microb Ecol 74, 623–639 (2017). https://doi.org/10.1007/s00248-017-0983-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-017-0983-1

Keywords

Navigation