Skip to main content
Log in

Growth Behavior of E. coli, Enterococcus and Staphylococcus Species in the Presence and Absence of Sub-inhibitory Antibiotic Concentrations: Consequences for Interpretation of Culture-Based Data

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Culture-based approaches are used to monitor, e.g., drinking water or bathing water quality and to investigate species diversity and antibiotic resistance levels in environmental samples. For health risk assessment, it is important to know whether the growing cultures display the actual abundance of, e.g., clinically relevant antibiotic resistance phenotypes such as vancomycin-resistant Enterococcus faecium/Enterococcus faecalis (VRE) or methicillin-resistant Staphylococcus aureus. In addition, it is important to know whether sub-inhibitory antibiotic concentrations, which are present in surface waters, favor the growth of antibiotic-resistant strains. Therefore, clinically relevant bacteria were isolated from different water sources and the growth behavior of 58 Escherichia coli, 71 Enterococcus, and 120 Staphylococcus isolates, belonging to different species and revealing different antibiotic resistance patterns, was studied with respect to “environmental” antibiotic concentrations. The finding that VRE could only be detected after specific enrichment can be explained by their slow growth compared to non-resistant strains. Interpreting their absence in standardized culture-based methods as nonexistent might be a fallacy. Sub-inhibitory antibiotic concentrations that were detected in sewage and receiving river water did not specifically promote antibiotic-resistant strains. Generally, those antibiotics that influenced cell metabolism directly led to slightly reduced growth rates and less than maximal optical densities after 48 h of incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bäumlisberger M, Youssar L, Schilhaber MB, Jonas D (2015) Influence of a non-hospital medical care facility on antimicrobial resistance in wastewater. PLoS One 10(3):e0122635

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ (2014) Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 5:Article 648, 14 pp

  3. Ferreira da Silva M, Tiago I, Veríssimo A, Boaventura RAR, Nunes O, Manaia CM (2006) Antibiotic resistance of enterococci and related bacteria in an urban wastewater treatment plant. FEMS Microbiol Ecol 55:322–329

    Article  CAS  PubMed  Google Scholar 

  4. Faria C, Vaz-Moreira I, Serapicos E, Nunes OC, Manaia CM (2009) Antibiotic resistance in coagulase negative staphyolococci isolated from wastewater and drinking water. Sci Total Environ 407:3876–3882

    Article  CAS  PubMed  Google Scholar 

  5. Leclercq R, Oberlé K, Galopin K, Cattoir V, Hélène B, Petit F (2013) Changes in enterococcal populations and related antibiotic resistance along medical center–wastewater treatment plant–river continuum. Appl Environ Microbiol 79(7):2428–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heß S, Gallert C (2014) Demonstration of staphylococci with inducible macrolide–lincosamide–streptogramin B (MLSB) resistance in sewage and river water and of the capacity of anhydroerythromycin to induce MLSB. FEMS Microbiol Ecol 88(1):48–59

    Article  PubMed  Google Scholar 

  7. Lüddeke F, Heß S, Gallert C, Winter J, Güde H, Löffler H (2015) Removal of total and antibiotic resistant bacteria in advanced wastewater treatment by ozonation in combination with different filtering techniques. Water Res 69:243–251

    Article  PubMed  Google Scholar 

  8. Grundmann H, Aires-de-Sousa M, Boyce J, Tiemersma E (2006) Emergence and resurgence of methicillin-resistant Staphylococcus aureus as a public-health threat. Lancet 368:874–885

    Article  PubMed  Google Scholar 

  9. Bund/Länderausschuss für Chemikaliensicherheit (BLAC, 2003) Arzneimittel in der Umwelt-Auswertung der Untersuchungsergebnisse. Freie und Hansestadt Hamburg, Behörde für Umwelt und Gesundheit, Institut für Hygiene und Umwelt; JVA Fuhlsbüttel Hamburg

  10. Kemper N (2008) Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Indic 8:1–13

    Article  CAS  Google Scholar 

  11. Ohlsen K, Ternes T, Werner G, Wallner U, Löffler D, Ziebuhr W, Witte W, Hacker J (2003) Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ Microbiol 5(8):711–716

    Article  CAS  PubMed  Google Scholar 

  12. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI (2011) Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 7(7):e1002158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alexander J, Bollmann A, Seitz W, Schwartz T (2015) Microbiological characterization of aquatic microbiomes targeting taxonomical marker genes and antibiotic resistance genes of opportunistic bacteria. Sci Total Environ 512–513:316–325

    Article  PubMed  Google Scholar 

  14. Maheux AF, Picard FJ, Boissinot M, Bissonnette L, Paradis S, Bergeron MG (2009) Analytical comparison of nine PCR primer sets designed to detect the presence of Escherichia coli/Shigella in water samples. Water Res 43(12):3019–3028

    Article  CAS  PubMed  Google Scholar 

  15. Deutsche Industrie Norm (DIN) 58940 (2011) Empfindlichkeitsprüfung von mikrobiellen Krankheitserregern gegen Chemotherapeutika. Deutsches Institut für Normung e.V, Berlin

    Google Scholar 

  16. EUCAST (European Committee on Antimicrobial Susceptibility Testing) (2011) Clinical breakpoints 2011. http://www.eucast.org/clinical_breakpoints/. Accessed 10 November 2011

  17. Monstein HJ, Ostholm-Balkhed A, Nilsson M, Dornbusch K, Nilsson LE (2007) Multiplex PCR amplification assay for the detection of blaSHV, blaTEM, blaCTX-M genes in Enterobacteriaceae. APMIS 115(12):1400–1408

    Article  CAS  PubMed  Google Scholar 

  18. CLSI (Clinical and Laboratory Standards Institute) (2011) Performance standards for antimicrobial susceptibility testing. Twenty-First Informational Supplement. Document M100-S2. CLSI, Wayne, PA, USA

  19. Bradford PA (2001) Extended-spectrum ß-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 14(4):933–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robert Koch Institut, Epidemiologisches Bulletin 13. Juli 2007/Nr. 28. ESBL und AmpC: ß-Laktamasen als eine Hauptursache der Cephalosporin-Resistenz bei Enterobakterien

  21. Depardieu F, Perichon B, Courvalin P (2004) Detection of the van alphabet and identification of enterococci and staphylococci at the species level by multiplex PCR. J Clin Microbiol 42(12):5857–5860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Predari SC, Ligozzi M, Fontana R (1991) Genotypic identification of methicillin-resistant coagulase-negative staphylococci by polymerase chain reaction. Antimicrob Agents Chemother 35(12):2568–2573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koike S, Aminov RI, Yannarell AC, Gans HD, Krapac IG, Chee-Sanford JC, Mackie RI (2010) Molecular ecology of macrolide–lincosamide–streptogramin B methylases in waste lagoons and subsurface waters associated with swine production. Microb Ecol 59:487–498

    Article  CAS  PubMed  Google Scholar 

  24. Schwendener S, Perreten V (2012) New MLSB resistance gene erm(43) in Staphylococcus lentus. Antimicrob Agents Chemother 56:4746–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lakritz J, Wilson WD (1997) Erythromycin: pharmacokinetics, bioavailability, nonantimicrobial activity, and possible mechanisms associated with adverse reactions. Proc Annu Conv AAEP 43:83–85

    Google Scholar 

  26. Luczkiewicz A, Jankowska K, Fudala-Ksiazek S, Olanczuk-Neyman K (2010) Antimicrobial resistance of fecal indicators in municipal wastewater treatment plant. Water Res 44(17):5089–5097

    Article  CAS  PubMed  Google Scholar 

  27. Händel N, Schuurmans JM, Brul S, ter Kuile BH (2013) Compensation of the metabolic costs of antibiotic resistance by physiological adaptation in Escherichia coli. Antimicrob Agents Chemother 57(8):3752–3762

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schwartz T, Kohnen W, Jansen B, Obst U (2003) Detection of antibiotic-resistant bacteria and their resistance genes in wastewater, surface water, and drinking water biofilms. FEMS Microbiol Ecol 43:325–335

    Article  CAS  PubMed  Google Scholar 

  29. Nam S, Kim M-J, Park J-G, Maeng PJ, Lee G-C (2013) Detection and genotyping of vancomycin-resistant Enterococcus spp. by multiplex polymerase chain reaction in Korean environmental samples. Int J Hyg Environ Health 216(4):421–427

    Article  CAS  PubMed  Google Scholar 

  30. Nishiyama M, Iguchi A, Suzuki Y (2015) Identification of Enterococcus faecium and Enterococcus faecalis as vanC-type vancomycin-resistant enterococci (VRE) from sewage and river water in the provincial city of Miyazaki, Japan. J Environ Sci Health A 50(1):16–25

    Article  CAS  Google Scholar 

  31. European Parliament & Council (2006) Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 concerning the management of bathing water quality and repealing Directive 76/160/EEC. Off J L 064:37–51

    Google Scholar 

  32. Börjesson S, Matussek A, Melin S, Löfgren S, Lindgren PE (2010) Methicillin-resistant Staphylococcus aureus (MRSA) in municipal wastewater: an uncharted threat? J Appl Microbiol 108:1244–1251

    Article  PubMed  Google Scholar 

  33. Rosenberg Goldstein RE, Micallef SA, Gibbs SG, Davis JA, He X, George A, Kleinfelter LM, Schreiber NA, Mukherjee S, Sapkota A, Joseph SW, Sapkota AR (2012) Methicillin-resistant Staphylococcus aureus (MRSA) detected at four U.S. wastewater treatment plants. Environ Health Perspect 120(11):1551–1558

    Article  PubMed  Google Scholar 

  34. Greulich P, Scott M, Evans MR, Allen RJ (2015) Growth-dependent bacterial susceptibility to ribosome-targeting antibiotics. Mol Syst Biol 11:article 796, 11 pp

  35. Cachet T, Van den Mooter G, Hauchecorne R, Vinckier C, Hoogmartens J (1989) Decomposition kinetics of erythromycin A in acidic aqueous solutions. Intl J Pharm 55:59–65

    Article  CAS  Google Scholar 

  36. Burchall JJ (1973) Mechanisms of trimethoprim–sulfamethoxazole II. J Infect Dis 128:437–441

    Article  Google Scholar 

  37. Chen C-R, Malik M, Snyder M, Drlia K (1996) DNA gyrase and topoisomerase IV on the bacterial chromosome: quinolone-induced DNA cleavage. J Mol Biol 258(4):627–637

    Article  CAS  PubMed  Google Scholar 

  38. Cantón R, Morosini M-I (2011) Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev 35:977–991

    Article  PubMed  Google Scholar 

  39. Vaz Jauri P, Bakker MG, Salomon CE, Kinkel LL (2013) Sub-inhibitory antibiotic concentrations mediate nutrient use and competition among soil Streptomyces. PlosOne 8(12):e81064

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. A. Becker and her team at Städtisches Klinikum Karlsruhe for providing clinical strains. We thank Dr. S. Schmidt for providing E. coli and Enterococcus strains. Furthermore, we thank the team at the University of Tübingen under the guidance of Prof. Dr. R. Triebskorn and the SchussenAktivplus project team of ISF at LUBW in Langenargen for organizing sampling campaigns and for supplying sewage and river water samples. We thank Prof. Dr. J. Winter, KIT, for helpful discussions during experimentation and preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Heß.

Ethics declarations

Funding

SchussenAktivplus was funded by the Federal Ministry for Education and Research BMBF (02WRS1281M) and co-funded by the Ministry of Environment Baden-Württemberg. In addition, Jedele & Partner GmbH, Ökonsult GbR, the City of Ravensburg, the AZV Mariatal, and the AV Unteres Schussental contributed financially to this research project.

Conflict of Interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heß, S., Gallert, C. Growth Behavior of E. coli, Enterococcus and Staphylococcus Species in the Presence and Absence of Sub-inhibitory Antibiotic Concentrations: Consequences for Interpretation of Culture-Based Data. Microb Ecol 72, 898–908 (2016). https://doi.org/10.1007/s00248-016-0788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0788-7

Keywords

Navigation