Skip to main content

Advertisement

Log in

Antibiotic Resistance Genes in Freshwater Biofilms May Reflect Influences from High-Intensity Agriculture

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Antibiotic resistance is a major public health concern with growing evidence of environmental gene reservoirs, especially in freshwater. However, the presence of antibiotic resistance genes in freshwater, in addition to the wide spectrum of land use contaminants like nitrogen and phosphate, that waterways are subjected to is inconclusive. Using molecular analyses, freshwater benthic rock biofilms were screened for genes conferring resistance to antibiotics used in both humans and farmed animals (aacA-aphD to aminoglycosides; mecA to ß-lactams; ermA and ermB to macrolides; tetA, tetB, tetK, and tetM to tetracyclines; vanA and vanB to glycopeptides). We detected widespread low levels of antibiotic resistance genes from 20 waterways across southern New Zealand throughout the year (1.3 % overall detection rate; 480 samples from three rocks per site, 20 sites, eight occasions; July 2010–May 2011). Three of the ten genes, ermB, tetK, and tetM, were detected in 62 of the 4800 individual screens; representatives confirmed using Sanger sequencing. No distinction could be made between human and agricultural land use contamination sources based on gene presence distribution alone. However, land use pressures are suggested by moderate correlations between antibiotic resistance genes and high-intensity farming in winter. The detection of antibiotic resistance genes at several sites not subject to known agricultural pressures suggests human sources of resistance, like waterway contamination resulting from unsatisfactory toilet facilities at recreational sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Halling-Sørensen B, Nors Nielsen S, Lanzky P, Ingerslev F, Holten Lützhøft H, Jørgensen S (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36(2):357–393

    Article  PubMed  Google Scholar 

  2. Kim S, Aga D (2007) Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J Toxicol Environ Health, Part B 10:559–573

    Article  CAS  Google Scholar 

  3. Jury K, Khan S, Vancov T, Stuetz R, Ashbolt N (2011) Are sewage treatment plants promoting antibiotic resistance? Clin Rev Environ Sci Technol 41:243–270

    Article  Google Scholar 

  4. Wellington E, Boxall A, Cross P, Feil E, Gaze W, Hawkey P, Johnson-Rollings A, Jones D, Lee N, Otten W, Thomas C, Williams A (2013) The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. Lancet Infect Dis 13:155–165

    Article  CAS  PubMed  Google Scholar 

  5. Sarmah A, Meyer M, Boxall A (2006) A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65:725–759

    Article  CAS  PubMed  Google Scholar 

  6. Hillis D, Lissemore L, Sibley P, Solomon K (2007) Effects of monensin on zooplankton communities in aquatic microcosms. Environ Sci Technol 41(18):6620–6626

    Article  CAS  PubMed  Google Scholar 

  7. Watanabe N, Harter T, Bergamaschi B (2008) Environmental occurrence and shallow ground water detection of the antibiotic monensin from dairy farms. J Environ Qual 37:S-78–S-85

    Article  Google Scholar 

  8. Watkinson A, Murby E, Kolpin D, Costanzo S (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ 407(8):2711–2723

    Article  CAS  PubMed  Google Scholar 

  9. Costanzo S, Murby J, Bates J (2005) Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218–223

    Article  CAS  PubMed  Google Scholar 

  10. Storteboom H, Arabi M, Davis J, Crimi B, Pruden A (2010) Identification of antibiotic resistance gene molecular signatures suitable as tracers of pristine river, urban, and agricultural sources. Environ Sci Technol 44(6):1947–1953

    Article  CAS  PubMed  Google Scholar 

  11. Chee-Sanford J, Mackie R, Koike S, Krapac I, Lin Y, Yannarell A, Maxwell S, Aminov R (2009) Fate and transport of antibiotic residues and antibiotic resistance genes following land application of manure wastes. J Environ Qual 38:1086–1108

    Article  CAS  PubMed  Google Scholar 

  12. Ding C, He J (2010) Effect of antibiotics in the environment on microbial populations. Appl Microbiol Biotechnol 87:925–941

    Article  CAS  PubMed  Google Scholar 

  13. Marti E, Variatza E, Balcazar J (2014) The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol 22(1):36–41

    Article  CAS  PubMed  Google Scholar 

  14. Wright G (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594

    Article  CAS  PubMed  Google Scholar 

  15. Pruden A, Arabi M, Storteboom H (2012) Correlation between upstream human activities and riverine antibiotic resistance genes. Environ Sci Technol 46:11541–11549

    Article  CAS  PubMed  Google Scholar 

  16. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part II. Chemosphere 75:417–434

    Article  PubMed  Google Scholar 

  17. Pal A, Gin K, Lin A, Reinhard M (2010) Impacts of emerging organic contaminants on freshwater resources: review of recent occurrences, sources, fate and effects. Sci Total Environ 408:6062–6069

    Article  CAS  PubMed  Google Scholar 

  18. Luo Y, Mao D, Rysz M, Zhou Q, Zhang H, Xu L, Alvarez P (2010) Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol 44(19):7220–7225

    Article  PubMed  Google Scholar 

  19. Barker-Reid F, Fox E, Faggian R (2010) Occurrence of antibiotic resistance genes in reclaimed water and river water in the Werribee Basin. J Water Health 8:521–531

    Article  CAS  PubMed  Google Scholar 

  20. Winkworth C (2013) Antibiotic resistance genes in freshwater biofilms along a whole river. J Water Health 11(2):186–198

    Article  CAS  PubMed  Google Scholar 

  21. Knapp C, Lima L, Olivares-Rieumont S, Bowen E, Werner D, Graham D (2012) Seasonal variations in antibiotic resistance gene transport in the Almendares River, Havana, Cuba. Front Microbiol 3:396

    PubMed  PubMed Central  Google Scholar 

  22. MfE (2007) Environment New Zealand 2007. Ministry for the Environment, Wellington

    Google Scholar 

  23. PCE (2004) Growing for good: intensive farming, sustainability and New Zealand’s environment. Parliamentary commissioner for the environment. Wellington, New Zealand

    Google Scholar 

  24. Allen H, Donato J, Wang H, Cloud-Hansen K, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev 8:251–259

    CAS  Google Scholar 

  25. Muirhead R, Collins R, Bremer P (2006) The association of E. coli and soil particles in overland flow. Water Sci Technol 54(3):153–159

    Article  CAS  PubMed  Google Scholar 

  26. River Environmental Classification (REC Otago) (2010) MfE

  27. Leathwick J, West D, Gerbeaux P, Kelly D, Roberston H, Brown D (2010) Freshwater ecosystems of NZ (FENZ). Department of Conservation, Wellington

    Google Scholar 

  28. Land Cover Database II (LCDB2) (2008) MfE

  29. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC

    Google Scholar 

  30. Wagenhoff A, Townsend C, Phillips N, Matthaei C (2011) Subsidy-stress and multiple-stressor effects along gradients of deposited fine sediment and dissolved nutrients in a regional set of streams and rivers. Freshw Biol 56(9):1916–1936

    Article  Google Scholar 

  31. Lange K, Townsend C, Matthaei C (2014) Can biological traits of stream invertebrates help disentangle the effects of multiple stressors in an agricultural catchment? Freshw Biol 59:2431–2446

    Article  Google Scholar 

  32. Bolker B, Brooks M, Clark C, Geange S, Poulsen J, Stevens M, White J (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135

    Article  PubMed  Google Scholar 

  33. Johnson J, Omland K (2004) Model selection in ecology and evolution. Trends Ecol Evol 19:101–108

    Article  PubMed  Google Scholar 

  34. Grueber C, Nakagawa S, Laws R, Jamieson I (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  CAS  PubMed  Google Scholar 

  35. R: A language and environment for statistical computing. Version 3.0.2 (2013) R Development Core Team

  36. Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  37. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  38. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142

    Article  Google Scholar 

  39. WHO (2000) Antimicrobial resistance: a global threat. Essent Drugs Monit 28–29

  40. Levy S, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129

    Article  CAS  PubMed  Google Scholar 

  41. Huijbers P, Blaak H, De Jong M, Graat E, Vandenbroucke-Grauls C, De Roda HA (2015) Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environ Sci Technol 49(20):11993–12004

    Article  CAS  PubMed  Google Scholar 

  42. Leonard A, Zhang L, Balfour A, Garside R, Gaze W (2015) Human recreational exposure to antibiotic resistant bacteria in coastal bathing waters. Environ Int 82:92–100

    Article  CAS  PubMed  Google Scholar 

  43. McArthur J, Fletcher D, Tuckfield R, Baker-Austin C (2015) Patterns of multi-antibiotic-resistant Escherichia coli from streams with no history of antimicrobial inputs. Microb Ecol. doi:10.1007/s00248-015-0678-4

    PubMed  Google Scholar 

  44. Lupo A, Coyne S, Urlich Berendonk T (2012) Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front Microbiol 3. doi:10.3389/fmicb.2012.00018

  45. Gillings M, Gaze W, Pruden A, Smalla K, Tiedje J, Zhu Y (2015) Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J 9:1269–1279

    Article  CAS  PubMed  Google Scholar 

  46. D’Costa V, King C, Kalan L, Morar M, Sung W, Schwarz C, Froese D, Zazula G, Calmels F, Debruyne R, Golding G, Poinar H, Wright G (2011) Antibiotic resistance is ancient. Nature 477:457–461

    Article  PubMed  Google Scholar 

  47. Sullivan B, Karthikeyan R (2012) Occurrence and prevalence of tetracycline resistant bacteria in a rapidly urbanizing subtropical watershed. J Nat Environ Sci 2:25–31

    Google Scholar 

  48. Desjardins M, Delgaty K, Ramotar K, Seetaram C, Toye B (2004) Prevalence and mechanisms of erythromycin resistance in group A and group B Streptococcus: implications for reporting susceptibility results. J Clin Microbiol 42(12):5620–5623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Waites K, Johnson C, Gray B, Edwards K, Crain M, Benjamin W Jr (2000) Use of clindamycin disks to detect macrolide resistance mediated by ermB and mefE in Streptococcus pneumoniae isolates from adults and children. J Clin Microbiol 38(5):1731–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  50. MPI (2013) Antibiotic sales analysis: 2009–2011. vol MPI Technical Paper No 2013/62. Wellington

  51. de Klein C, Smith L, Monaghan R (2006) Restricted autumn grazing to reduce nitrous oxide emissions from dairy pastures in Southland, New Zealand. Agric Ecosyst Environ 112(2):192–199

    Article  Google Scholar 

  52. Ledgard G (2013) Land use change in the Southland region: technical report June 2013. Environmental Southland, Invercargill

    Google Scholar 

  53. Borbone S, Lupo A, Mezzatesta M, Campanile F, Santagati M, Stefani S (2008) Evaluation of the in vitro activity of tigecycline against multiresistant Gram-positive cocci containing tetracycline resistance determinants. Int J Antimicrob Agents 31:209–215

    Article  CAS  PubMed  Google Scholar 

  54. Chee-Sanford J, Aminov R, Krapac I, Garrigues-Jeanjean N, Mackie R (2001) Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl Environ Microbiol 67(4):1494–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Guay G, Rothstein D (1993) Expression of the tetK gene from Staphylococcus aureus in Escherichia coli: comparison of substrate specificities of tetA(B), tetA(C), and tetK efflux proteins. Antimicrob Agents Chemother 37(2):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. CVMP (2011) Reflection paper on the use of macrolides, lincosamides and streptogramins (MLS) in food-producing animals in the European Union: development of resistance and impact on human and animal health. European Medicines Agency, London

    Google Scholar 

  57. Groh J, Luo Q, Ballard J, Krumholz L (2007) Genes that enhance the ecological fitness of Shewanella oneidensis MR-1 in sediments reveal the value of antibiotic resistance. Appl Environ Microbiol 73(2):492–498

    Article  CAS  PubMed  Google Scholar 

  58. Dönhöfer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R, Wilson DN (2012) Structural basis for TetM-mediated tetracycline resistance. Proc Natl Acad Sci 109(42):16900–16905

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Colin Townsend and four anonymous reviewers for the editorial suggestions, Emily Nichol, Rachel, Clive, and Anne Paterson for fieldwork assistance, Nicky McHugh and Tania King for laboratory assistance, and Environment Southland for the site information. This research was funded by a New Zealand Ministry of Business, Innovation and Employment Postdoctoral Fellowship (UOOX0902) to CWL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia Winkworth-Lawrence.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

ESM 2

(DOC 24 kb)

ESM 3

(DOC 78 kb)

ESM 4

(DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Winkworth-Lawrence, C., Lange, K. Antibiotic Resistance Genes in Freshwater Biofilms May Reflect Influences from High-Intensity Agriculture. Microb Ecol 72, 763–772 (2016). https://doi.org/10.1007/s00248-016-0740-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0740-x

Keywords

Navigation