Skip to main content
Log in

Sediments and Soils Act as Reservoirs for Taxonomic and Functional Bacterial Diversity in the Upper Mississippi River

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In this study, we utilized Illumina next-generation sequencing of 16S rDNA to characterize the bacterial communities in water, sediments, and soils at four sites along the Mississippi River and Minnesota River, in Minnesota, in order to evaluate community exchanges between these habitats. Communities in water and sediment were hypothesized to show greater taxonomic similarity than those in soil, while microbial communities in sediment and soil would show greater functional similarity. Habitat-specific communities showed significant differences in phylogenetic structure and β-diversity (P < 0.001), but site-specific differences in community structures within a single habitat type did not differ greatly (P ≥ 0.083). Community exchange among habitats generally influenced < 5 % of the total community composition in a single sample, with the exception of the sediment community at the Minnesota River site, which contributed to a mean of 14 % of the microbial community in the water column. Communities from all habitat types were significantly correlated with each other (r = 0.44–0.64, P ≤ 0.004). Furthermore, approximately 33 % of the taxonomic units were found in all samples and comprised at least 40 % of the bacterial community. Functional annotation of shotgun sequencing data revealed similar functional profiles for sediment and soil communities that were distinct from those in the water. Results of this study suggest that sediments, when disturbed, contribute significantly to bacterial communities in the water and that a core bacterial community may be supported in the soils and sediments. Furthermore, a high degree of functional redundancy results in similar functional profiles in sediment and soil communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Horner-Devine MC, Leibold MA, Smith VH, Bohannan BJM (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622

    Article  Google Scholar 

  2. Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546

    Article  CAS  PubMed  Google Scholar 

  3. Gilbert JA, Field D, Swift P et al (2009) The seasonal structure of microbial communities in the Western English channel. Environ Microbiol 11:3132–3139

    Article  CAS  PubMed  Google Scholar 

  4. Gilbert JA, Steele JA, Caporaso JG et al (2012) Defining seasonal marine microbial community dynamics. ISME J 6:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ Microbiol Rep 4:1–9. doi:10.1111/j.1758-2229.2011.00257.x

    Article  PubMed  Google Scholar 

  6. Staley C, Gould TJ, Wang P et al (2014) Bacterial community structure is indicative of chemical inputs in the Upper Mississippi River. Front Microbiol 5:524

    PubMed  PubMed Central  Google Scholar 

  7. Staley C, Gould TJ, Wang P et al (2015) Species sorting and seasonal dynamics primarily shape bacterial communities in the Upper Mississippi River. Sci Total Environ 505:435–445. doi:10.1016/j.scitotenv.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  8. Fortunato CS, Crump BC (2011) Bacterioplankton community variation across river to ocean environmental gradients. Microb Ecol 62:374–382

    Article  PubMed  Google Scholar 

  9. Winter C, Matthews B, Suttle CA (2013) Effects of environmental variation and spatial distance on Bacteria, Archaea and viruses in sub-polar and arctic waters. ISME J 7:1507–1518. doi:10.1038/ismej.2013.56

    Article  PubMed  PubMed Central  Google Scholar 

  10. Newton RJ, Bootsma MJ, Morrison HG et al (2013) A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb Ecol 65:1011–1023. doi:10.1007/s00248-013-0200-9

    Article  PubMed  PubMed Central  Google Scholar 

  11. Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban rivers. Appl Environ Microbiol 79:1897–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gløckner FO, Zaichikov E, Belkova N et al (2000) Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of Actinobacteria. Appl Environ Microbiol 66:5053–5065

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zwart G, Crump BC, Agterveld MPKV et al (2002) Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155

    Article  Google Scholar 

  14. Feng B-W, Li X-R, Wang J-H et al (2009) Bacterial diversity of water and sediment in the Changjiang estuary and coastal area of the East China Sea. FEMS Microbiol Ecol 70:80–92. doi:10.1111/j.1574-6941.2009.00772.x

    PubMed  Google Scholar 

  15. Xia N, Xia X, Liu T et al (2014) Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world. J Soils Sediments 14:1894–1904. doi:10.1007/s11368-014-0974-5

    Article  CAS  Google Scholar 

  16. Jiang H, Dong H, Zhang G et al (2006) Microbial diversity in water and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ Microbiol 72:3832–3845. doi:10.1128/AEM.02869-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Langenheder S, Lindstrom ES, Tranvik LJ (2006) Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 72:212–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pereira WE, Hostettler FD (1993) Nonpoint-source contamination of the Mississippi River and its tributaries by herbicides. Environ Sci Technol 27:1542–1552

    Article  CAS  Google Scholar 

  19. Wiener JG, Sandheinrich MB (2010) Contaminants in the Upper Mississippi River: historic trends, responses to regulatory controls, and emerging concerns. Hydrobiologia 640:49–70

    Article  CAS  Google Scholar 

  20. Balogh SJ, Engstrom DR, Almendinger JE et al (1999) History of mercury loading in the Upper Mississippi River reconstructed from the sediments of Lake Pepin. Environ Sci Technol 33:3297–3302

    Article  CAS  Google Scholar 

  21. Balogh SJ, Engstrom DR, Almendinger JE et al (2009) A sediment record of trace metal loadings in the Upper Mississippi River. J Paleolimnol 41:623–639

    Article  Google Scholar 

  22. Witt V, Wild C, Uthickea S (2012) Terrestrial runoff controls the bacterial community composition of biofilms along a water quality gradient in the great barrier reef. Appl Environ Microbiol 78:7786–7791. doi:10.1128/AEM.01623-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Noble RT, Fuhrman JA (2001) Enteroviruses detected by reverse transcriptase polymerase chain reaction from the coastal waters of Santa Monica Bay, California: low correlation to bacterial indicator levels. Hydrobiologia 460:175–184

    Article  CAS  Google Scholar 

  24. Noble RT, Weisberg SB, Leecaster MK et al (2003) Storm effects on regional beach water quality along the southern California shoreline. J Water Health 1:23–31

    PubMed  Google Scholar 

  25. Staley C, Reckhow KH, Lukasik J, Harwood VJ (2012) Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake. Water Res 46:5799–5812. doi:10.1016/j.watres.2012.08.012

    Article  CAS  PubMed  Google Scholar 

  26. Staley C, Unno T, Gould TJ et al (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the Upper Mississippi River. J Appl Microbiol 115:1147–1158. doi:10.1111/jam.12323

    Article  CAS  PubMed  Google Scholar 

  27. Staley C, Gould TJ, Wang P et al (2015) Evaluation of water sampling methodologies for amplicon-based characterization of bacterial community structure. J Microbiol Methods 114:43–50. doi:10.1016/j.mimet.2015.05.003

    Article  CAS  PubMed  Google Scholar 

  28. Claesson MJ, Wang QO, O’Sullivan O et al (2010) Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. doi:10.1093/nar/gkq873

    PubMed  PubMed Central  Google Scholar 

  29. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pruesse E, Quast C, Knittel K et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898. doi:10.1111/j.1462-2920.2010.02193.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ Microbiol 12:118–123. doi:10.1111/j.1462-2920.2009.02051.x

    Article  CAS  PubMed  Google Scholar 

  33. Edgar RC, Haas BJ, Clemente JC et al (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gihring TM, Green SJ, Schadt CW (2012) Massively parallel rRNA gene sequencing exacerbates the potential for biased community diversity comparisons due to variable library sizes. Environ Microbiol 14:285–290

    Article  CAS  PubMed  Google Scholar 

  35. Cole JR, Wang Q, Cardenas E et al (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer F, Paarmann D, D’Souza M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinf 9:386

    Article  CAS  Google Scholar 

  37. Segata N, Waldron L, Ballarini A et al (2012) Metagenomic microbial community profiling using unique clade-specific marker genes. Nat Methods 9:811–814. doi:10.1038/nmeth.2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 170:1–7. doi:10.1093/bioinformatics/btu170

    Google Scholar 

  40. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  41. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  42. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  44. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  46. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  47. Oksanen J, Blanchet FG, Kindt R et al (2015) Vegan: commity ecology package. R package version 2.3-0. http://CRAN.R-project.org/package=vegan

  48. Knights D, Kuczynski J, Charlson ES et al (2011) Bayesian community-wide culture-independent microbial source tracking. Nat Methods 8:761–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fortunato CS, Herfort L, Zuber P et al (2012) Spatial variability overwhelms seasonal patterns in bacterioplankton communities across a river to ocean gradient. ISME J 6:554–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chandrasekaran R, Hamilton MJ, Wang P et al (2015) Geographic isolation of Escherichia coli genotypes in sediments and water of the seven mile creek—a constructed riverine watershed. Sci Total Environ 538:78–85. doi:10.1016/j.scitotenv.2015.08.013

    Article  CAS  PubMed  Google Scholar 

  51. Olmanson LG, Brezonik PL, Bauer ME (2013) Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sens Environ 130:254–265. doi:10.1016/j.rse.2012.11.023

    Article  Google Scholar 

  52. Ligi T, Oopkaup K, Truu M et al (2014) Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecol Eng 72:56–66. doi:10.1016/j.ecoleng.2013.09.007

    Article  Google Scholar 

  53. Caporaso JG, Paszkiewicz K, Field D et al (2012) The Western English Channel contains a persistent microbial seed bank. ISME J 6:1089–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sun MY, Dafforn KA, Johnston EL, Brown MV (2013) Core sediment bacteria drive community response to anthropogenic contamination over multiple environmental gradients. Environ Microbiol 15:2517–2531. doi:10.1111/1462-2920.12133

    Article  PubMed  Google Scholar 

  55. Lear G, Bellamy J, Case BS et al (2014) Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. ISME J 8:1715–1726. doi:10.1038/ismej.2014.21

    Article  PubMed  Google Scholar 

  56. Raynaud X, Nunan N (2014) Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9:e87217. doi:10.1371/journal.pone.0087217

    Article  PubMed  PubMed Central  Google Scholar 

  57. Frossard A, Gerull L, Mutz M, Gessner MO (2012) Disconnect of microbial structure and function: enzyme activities and bacterial communities in nascent stream corridors. ISME J 6:680–691. doi:10.1038/ismej.2011.134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Strickland MS, Lauber C, Fierer N, Bradford MA (2009) Testing the functional significance of microbial community composition. Ecology 90:441–451. doi:10.1890/08-0296.1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded, in part, by the Minnesota Environment and Natural Resources Trust Fund (Project 28B) as recommended by the Legislative-Citizen Commission on Minnesota Resources. Sequence processing and analysis was performed using the resources of the Minnesota Supercomputing Institute. We would also like to thank Clairessa Brown and Sierra Sahulka for assistance with sample collection and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sadowsky.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staley, C., Gould, T.J., Wang, P. et al. Sediments and Soils Act as Reservoirs for Taxonomic and Functional Bacterial Diversity in the Upper Mississippi River. Microb Ecol 71, 814–824 (2016). https://doi.org/10.1007/s00248-016-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0729-5

Keywords

Navigation