Skip to main content

Advertisement

Log in

Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The effect of salinity on prokaryotic community diversity in Abijata-Shalla Soda Ash Concentration Pond system was investigated by using high-throughput 16S rRNA gene 454 pyrosequencing. Surface water and brine samples from five sites spanning a salinity range of 3.4 % (Lake Abijata) to 32 % (SP230F, crystallizer pond) were analyzed. Overall, 33 prokaryotic phyla were detected, and the dominant prokaryotic phyla accounted for more than 95 % of the reads consisting of Planctomycetes, Bacteroidetes, candidate division TM7, Deinococcus-Thermus, Firmicutes, Actinobacteria, Proteobacteria, and Euryarchaeota. Diversity indices indicated that operational taxonomic unit (OTU) richness decreases drastically with increasing salinity in the pond system. A total of 471 OTUs were found at 3.4 % salinity whereas 49 OTUs were detected in pond SP211 (25 % salinity), and only 19 OTUs in the crystallization pond at 32 % salinity (SP230F). Along the salinity gradient, archaeal community gradually replaced bacterial community. Thus, archaeal community accounted for 0.4 % in Lake Abijata while 99.0 % in pond SP230F. This study demonstrates that salinity appears to be the key environmental parameter in structuring the prokaryotic communities of haloalkaline environments. Further, it confirmed that the prokaryotic diversity in Lake Abijata is high and it harbors taxa with low or no phylogenetic similarities to existing prokaryotic taxa and thus represents novel microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jones BE, Grant WD, Duckworth AW, Owenson GG (1998) Microbial diversity of soda lakes. Extremophiles 2:191–200

    Article  CAS  PubMed  Google Scholar 

  2. Sorokin DY, Kuenen JG (2005) Chemolithotrophic haloalkaliphiles from soda lakes. FEMS Microbiol Ecol 52:287–295. doi:10.1016/j.femsec.2005.02.012

    Article  CAS  PubMed  Google Scholar 

  3. Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71. doi:10.1007/s00792-003-0361-4

    Article  CAS  PubMed  Google Scholar 

  4. Joshi AA, Kanekar PP, Kelkar AS, Shouche YS, Vani AA, Borgave SB, Sarnaik SS (2008) Cultivable bacterial diversity of alkaline Lonar lake, India. Microb Ecol 55:163–172. doi:10.1007/s00248-007-9264-8

    Article  PubMed  Google Scholar 

  5. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476. doi:10.1038/ismej.2012.137

    Article  PubMed  Google Scholar 

  6. Sorokin DY, Kuenen JG, Muyzer G (2011) The microbial sulfur cycle at extremely haloalkaline conditions of soda lakes. Front Microbiol 2:44. doi:10.3389/fmicb.2011.00044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lanzén A, Simachew A, Gessesse A, Chmolowska D, Jonassen I, Ovreas L (2013) Surprising prokaryotic and eukaryotic diversity, community structure and biogeography of ethiopian soda lakes. PLoS One 8, e72577. doi:10.1371/journal.pone.0072577

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mwirichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E (2011) Bacterial diversity in the haloalkaline Lake Elmenteita, Kenya. Curr Microbiol 62:209–221. doi:10.1007/s00284-010-9692-4

    Article  CAS  PubMed  Google Scholar 

  9. Tindall BJ, Mills AA, Grant WD (1980) An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260

    Google Scholar 

  10. Mwirichia R, Muigai AW, Tindall B, Boga HI, Stackebrandt E (2010) Isolation and characterisation of bacteria from the haloalkaline Lake Elmenteita, Kenya. Extremophiles 14:339–348. doi:10.1007/s00792-010-0311-x

    Article  PubMed  Google Scholar 

  11. Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. Hydrobiologia 158:29–67

    Article  CAS  Google Scholar 

  12. Kebede E (2002) Phytoplankton distribution in lakes of the Ethiopian Rift Valley. Ethiopian Rift Valley Lakes Backhuys, Leiden, pp 61–93

    Google Scholar 

  13. Gessesse A (1997) The use of nug meal as a low-cost substrate for the production of alkaline protease by the alkaliphilic Bacillus sp. AR-009 and some properties of the enzyme. Bioresource Technol 62:59–61

    Article  CAS  Google Scholar 

  14. Hatti-Kaul R, Mattiasson B, Gessesse A (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme Microbial Tech 32:519–524

    Article  Google Scholar 

  15. Martins R, Davids W, Al-Soud W, Levander F, Rådström P, Hatti-Kaul R (2001) Starch-hydrolyzing bacteria from Ethiopian soda lakes. Extremophiles 5:135–144. doi:10.1007/s007920100183

    Article  CAS  PubMed  Google Scholar 

  16. Achtman M, Wagner M (2008) Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol 6:431–440

    CAS  PubMed  Google Scholar 

  17. Duckworth AW, Grant WD, Jones BE, Rv S (1996) Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Ecolol 19:181–191

    Article  CAS  Google Scholar 

  18. Lozupone CA, Hamady M, Kelley ST, Knight R (2007) Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 73:1576–1585. doi:10.1128/AEM.01996-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485. doi:10.1128/AEM.00767-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xiong J, Liu Y, Lin X, Zhang H, Zeng J, Hou J, Yang Y, Yao T, Knight R, Chu H (2012) Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environ Microbiol 14:2457–2466. doi:10.1111/j.1462-2920.2012.02799.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ayenew T, Legesse D (2007) The changing face of the Ethiopian rift lakes and their environs: call of the time. Lakes Reserv: Res Manage 12:149–165

    Article  Google Scholar 

  22. Ayenew T (2004) Environmental implications of changes in the levels of lakes in the Ethiopian Rift since 1970. Reg environ change 4:192–204

    Article  Google Scholar 

  23. Wood RB, Talling JF (1988) Chemical and algal relationships in a salinity series of Ethiopian inland waters. Springer

  24. Legesse D, Vallet‐Coulomb C, Gasse F (2004) Analysis of the hydrological response of a tropical terminal lake, Lake Abiyata (Main Ethiopian Rift Valley) to changes in climate and human activities. Hydrol processes 18:487–504

    Article  Google Scholar 

  25. Oren A (2002) Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications. J Ind Microbiol Biotechnol 28:56–63. doi:10.1038/sj/jim/7000176

    Article  CAS  PubMed  Google Scholar 

  26. Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115

    Article  CAS  PubMed  Google Scholar 

  27. Bengtsson MM, Sjotun K, Lanzen A, Ovreas L (2012) Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME J 6:2188–2198. doi:10.1038/ismej.2012.67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ (2011) Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12:38. doi:10.1186/1471-2105-12-38

    Article  PubMed Central  PubMed  Google Scholar 

  29. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lanzén A, Jorgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, Ovreas L, Urich T (2012) CREST--classification resources for environmental sequence tags. PLoS One 7, e49334. doi:10.1371/journal.pone.0049334

    Article  PubMed Central  PubMed  Google Scholar 

  31. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) vegan: Community Ecology Package. R package version: 2

  32. 32. Colwell RK (2013) Stasttical Estimation of Species Richness and Shared Species from Samples University of Connecticut, USA. http://purl.oclc.org/estimates. 2013

  33. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  34. Milford AD, Achenbach LA, Jung DO, Madigan MT (2000) Rhodobaca bogoriensis gen. nov. and sp. nov., an alkaliphilic purple nonsulfur bacterium from African Rift Valley soda lakes. Arch Microbiol 174:18–27

    Article  CAS  PubMed  Google Scholar 

  35. Kebede E (1996) Anabaenopsis abzjatae, a new cyanophyte from Lake Abijata, an alkaline, saline lake in the Ethiopian Rift. Algological Studies 80:1–8

    Google Scholar 

  36. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617. doi:10.1007/s00248-006-9193-y

    Article  CAS  PubMed  Google Scholar 

  37. Casamayor EO, Massana R, Benlloch S, Ovreas L, Diez B, Goddard VJ, Gasol JM, Joint I, Rodriguez-Valera F, Pedros-Alio C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348

    Article  PubMed  Google Scholar 

  38. Benlloch S, López‐López A, Casamayor EO, Øvreås L, Goddard V, Daae FL, Smerdon G, Massana R, Joint I, Thingstad F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360

    Article  PubMed  Google Scholar 

  39. Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267

    CAS  Google Scholar 

  40. Hollister EB, Engledow AS, Hammett AJ, Provin TL, Wilkinson HH, Gentry TJ (2010) Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J 4:829–838. doi:10.1038/ismej.2010.3

    Article  CAS  PubMed  Google Scholar 

  41. Oren A (2011) Ecology of Halophiles. In: Bull AT, Robb FT, Stetter KO (eds) Horikoshi, K. Springer, Extremophiles Handbook, pp 344–361

    Google Scholar 

  42. Ventosa A, Nieto JJ, Oren A (1998) Biology of moderately halophilic aerobic bacteria. MicrobiolMol Biol R 62:504–544

    CAS  Google Scholar 

  43. Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621. doi:10.1111/j.1462-2920.2007.01377.x

    Article  CAS  PubMed  Google Scholar 

  44. Boujelben I, Gomariz M, Martinez-Garcia M, Santos F, Pena A, Lopez C, Anton J, Maalej S (2012) Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia. Ant Van Leeuwenhoek 101:845–857. doi:10.1007/s10482-012-9701-7

    Article  CAS  Google Scholar 

  45. Oren A (2009) Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat Microb Ecol 56:193–204. doi:10.3354/ame01297

    Article  Google Scholar 

  46. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11:215–227

    Article  Google Scholar 

  47. Purdy K, Cresswell‐Maynard T, Nedwell D, McGenity T, Grant W, Timmis K, Embley T (2004) Isolation of haloarchaea that grow at low salinities. Environ Microbiol 6:591–595

    Article  CAS  PubMed  Google Scholar 

  48. Savage KN, Krumholz LR, Oren A, Elshahed MS (2007) Haladaptatus paucihalophilus gen. nov., sp. nov., a halophilic archaeon isolated from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 57:19–24. doi:10.1099/ijs.0.64464-0

    Article  CAS  PubMed  Google Scholar 

  49. Savage KN, Krumholz LR, Oren A, Elshahed MS (2008) Halosarcina pallida gen. nov., sp. nov., a halophilic archaeon from a low-salt, sulfide-rich spring. Int J Syst Evol Microbiol 58:856–860. doi:10.1099/ijs.0.65398-0

    Article  PubMed  Google Scholar 

  50. Hubert C, Loy A, Nickel M, Arnosti C, Baranyi C, Brüchert V, Ferdelman T, Finster K, Christensen FM, de Rezende JR (2009) A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325:1541–1544. doi:10.1126/science.1174012

    Article  CAS  PubMed  Google Scholar 

  51. Pommier T, Neal PR, Gasol JM, Coll M, Acinas SG, Pedrós-Alió C (2010) Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat Microbial Ecol 61:221–233. doi:10.3354/ame01484

    Article  Google Scholar 

  52. Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL (2010) Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea. Appl Environ Microbiol 76:757–768. doi:10.1128/AEM.02409-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579. doi:10.1038/ismej.2011.41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Øvreås L, Daae FL, Torsvik V, Rodriguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301. doi:10.1007/s00248-003-3006-3

    Article  PubMed  Google Scholar 

  55. Lennon JT, Jones SE (2011) Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol 9:119–130. doi:10.1038/nrmicro2504

    Article  CAS  PubMed  Google Scholar 

  56. Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466

    Article  Google Scholar 

  57. Mwatha WE, Grant WD (1993) Natronobacterium vacuolata sp. nov., a haloalkaliphilic archaeon isolated from Lake Magadi, Kenya. Int J Syst Bacteriol 43:401–404

    Article  Google Scholar 

  58. Kamekura M, Dyall-Smith ML, Upasani V, Ventosa A, Kates M (1997) Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Int J Syst Bacteriol 47:853–857

    Article  CAS  PubMed  Google Scholar 

  59. Feng J, Zhou PJ, Liu SJ (2004) Halorubrum xinjiangense sp. nov., a novel halophile isolated from saline lakes in China. Int J Syst Evol Microbiol 54:1789–1791. doi:10.1099/ijs.0.63209-0

    Article  CAS  PubMed  Google Scholar 

  60. Hu L, Pan H, Xue Y, Ventosa A, Cowan DA, Jones BE, Grant WD, Ma Y (2008) Halorubrum luteum sp. nov., isolated from Lake Chagannor, Inner Mongolia, China. Int J Syst Evol Microbiol 58:1705–1708. doi:10.1099/ijs.0.65700-0

    Article  CAS  PubMed  Google Scholar 

  61. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760. doi:10.1128/AEM.00040-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Feng J, Zhou P, Zhou YG, Liu SJ, Warren-Rhodes K (2005) Halorubrum alkaliphilum sp. nov., a novel haloalkaliphile isolated from a soda lake in Xinjiang, China. Int J Syst Evol Microbiol 55:149–152. doi:10.1099/ijs.0.63320-0

    Article  CAS  PubMed  Google Scholar 

  63. Walsh DA, Papke RT, Doolittle WF (2005) Archaeal diversity along a soil salinity gradient prone to disturbance. Environ Microbiol 7:1655–1666. doi:10.1111/j.1462-2920.2005.00864.x

    Article  CAS  PubMed  Google Scholar 

  64. Wainø M, Tindall BJ, Ingvorsen K (2000) Halorhabdus utahensis gen. nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from Great Salt Lake, Utah. Int J Syst Evol Microbiol 50:183–190

    Article  PubMed  Google Scholar 

  65. Antunes A, Taborda M, Huber R, Moissl C, Nobre MF, da Costa MS (2008) Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. Int J Syst Evol Microbiol 58:215–220. doi:10.1099/ijs.0.65316-0

    Article  CAS  PubMed  Google Scholar 

  66. Rainey FA, Ray K, Ferreira M, Gatz BZ, Nobre MF, Bagaley D, Rash BA, Park M-J, Earl AM, Shank NC (2005) Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample. Appl Environ Microbiol 71:5225–5235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ekman JV, Raulio M, Busse HJ, Fewer DP, Salkinoja-Salonen M (2011) Deinobacterium chartae gen. nov., sp. nov., an extremely radiation-resistant, biofilm-forming bacterium isolated from a Finnish paper mill. Int J Syst Evol Microbiol 61:540–548. doi:10.1099/ijs.0.017970-0

    Article  CAS  PubMed  Google Scholar 

  68. Bryant DA, Frigaard NU (2006) Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol 14:488–496. doi:10.1016/j.tim.2006.09.001

    Article  CAS  PubMed  Google Scholar 

  69. Williams WD (1998) Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia 381:191–201

    Article  Google Scholar 

  70. Oren A (2002) Halophilic microorganisms and their environments. Kluwer Academic Publishers, the Netherlands

    Book  Google Scholar 

  71. Wu XY, Shi KL, Xu XW, Wu M, Oren A, Zhu XF (2010) Alkaliphilus halophilus sp. nov., a strictly anaerobic and halophilic bacterium isolated from a saline lake, and emended description of the genus Alkaliphilus. Int J Syst Evol Microbiol 60:2898–2902. doi:10.1099/ijs.0.014084-0

    Article  CAS  PubMed  Google Scholar 

  72. Sorokin DY, Kuenen JG (2005) Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702. doi:10.1016/j.femsre.2004.10.005

    Article  CAS  PubMed  Google Scholar 

  73. Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Oremland RS (1990) Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California. ApplEnviron Microbiol 56:614–622

    CAS  Google Scholar 

  75. Herbst DB (1998) Potential salinity limitations on nitrogen fixation in sediments from Mono Lake, California. Int JSalt Lake Res 7:261–274

    Google Scholar 

  76. Sorokin ID, Kravchenko IK, Tourova TP, Kolganova TV, Boulygina ES, Sorokin DY (2008) Bacillus alkalidiazotrophicus sp. nov., a diazotrophic, low salt-tolerant alkaliphile isolated from Mongolian soda soil. Int J Syst Evol Microbiol 58:2459–2464. doi:10.1099/ijs.0.65655-0

    Article  CAS  PubMed  Google Scholar 

  77. Sorokin I, Zadorina E, Kravchenko I, Boulygina E, Tourova T, Sorokin D (2008) Natronobacillus azotifigens gen. nov., sp. nov., an anaerobic diazotrophic haloalkaliphile from soda-rich habitats. Extremophiles 12:819–827

    Article  CAS  PubMed  Google Scholar 

  78. Sorokin ID, Kravchenko IK, Doroshenko EV, Boulygina ES, Zadorina EV, Tourova TP, Sorokin DY (2008) Haloalkaliphilic diazotrophs in soda solonchak soils. FEMS Microbiol Ecol 65:425–433

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Norwegian Programme for Development, Research and Education (NUFU) project no. 10069/2007 and the School of Graduate Studies, Addis Ababa University.

Conflict of interest

The authors are responsible for all of the contents of the manuscript and it has not been or will not be submitted elsewhere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Addis Simachew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 71 kb)

Fig. S2

(DOCX 46 kb)

Table S1

(DOCX 17 kb)

Table S2

(DOCX 46 kb)

Table S3

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simachew, A., Lanzén, A., Gessesse, A. et al. Prokaryotic Community Diversity Along an Increasing Salt Gradient in a Soda Ash Concentration Pond. Microb Ecol 71, 326–338 (2016). https://doi.org/10.1007/s00248-015-0675-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0675-7

Keywords

Navigation