Skip to main content
Log in

Phylogeny of Nodulation Genes and Symbiotic Diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium Strains from Different Regions of Senegal

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Acacia senegal and Acacia seyal are small, deciduous legume trees, most highly valued for nitrogen fixation and for the production of gum arabic, a commodity of international trade since ancient times. Symbiotic nitrogen fixation by legumes represents the main natural input of atmospheric N2 into ecosystems which may ultimately benefit all organisms. We analyzed the nod and nif symbiotic genes and symbiotic properties of root-nodulating bacteria isolated from A. senegal and A. seyal in Senegal. The symbiotic genes of rhizobial strains from the two Acacia species were closed to those of Mesorhizobium plurifarium and grouped separately in the phylogenetic trees. Phylogeny of rhizobial nitrogen fixation gene nifH was similar to those of nodulation genes (nodA and nodC). All A. senegal rhizobial strains showed identical nodA, nodC, and nifH gene sequences. By contrast, A. seyal rhizobial strains exhibited different symbiotic gene sequences. Efficiency tests demonstrated that inoculation of both Acacia species significantly affected nodulation, total dry weight, acetylene reduction activity (ARA), and specific acetylene reduction activity (SARA) of plants. However, these cross-inoculation tests did not show any specificity of Mesorhizobium strains toward a given Acacia host species in terms of infectivity and efficiency as stated by principal component analysis (PCA). This study demonstrates that large-scale inoculation of A. senegal and A. seyal in the framework of reafforestation programs requires a preliminary step of rhizobial strain selection for both Acacia species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NFT:

Nitrogen-fixing trees

References

  1. Sprent J (1994) Evolution and diversity in the legume-rhizobium symbiosis: chaos theory? Plant Soil 161:1–10. doi:10.1007/bf02183080

    Article  Google Scholar 

  2. Kang BT, Grimme H, Lawson TT (1985) Alley cropping sequentially cropped maize and cowpea with leucaena on sandy soil in Southern Nigeria. Plant Soil 85:267–277

    Article  CAS  Google Scholar 

  3. Midgley JJ, Bond WJ (2001) A synthesis of the demography of African acacias. J Trop Ecol 17:871–886

    Article  Google Scholar 

  4. Wickens GE, Seif El Din AG, Guinko S, Nahal I (1995) Role of Acacia species in the rural economy of dry Africa and the Near East. In: 13 col. Phot., FRDF (ed) Rome. pp 134

  5. Njiti CF, Galiana A (1996) Symbiotic properties and rhizobium requirements for effective nodulation of five tropical dry zone Acacias. Agroforest Syst 43:265–275

    Article  Google Scholar 

  6. Motlagh S, Ravines P, Karamallah KA, Qifeng M (2006) The analysis of Acacia gums using electrophoresis. Food Hydrocolloid 20:848–854

    Article  CAS  Google Scholar 

  7. Al-Assaf S, Phillips GO, Aoki H, Sasaki Y (2007) Characterization and properties of Acacia senegal (L.) Willd. var. senegal with enhanced properties (Acacia (sen) SUPER GUMTM): part 1. Controlled maturation of Acacia senegal var. senegal to increase viscoelasticity, produce a hydrogel form and convert a poor into a good emulsifier. Food Hydrocolloid 21:319–328

    Article  CAS  Google Scholar 

  8. Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    CAS  PubMed  Google Scholar 

  10. Rivas R, Laranjo M, Mateos PF, Oliveira S, Martinez-Molina E, Velazquez E (2007) Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Lett Appl Microbiol 44:412–418. doi:10.1111/j.1472-765X.2006.02086.x

    Article  CAS  PubMed  Google Scholar 

  11. Hennecke H, Kaluza K, Thony B, Fuhrmann M, Ludwig W, Stackebrandt E (1985) Concurrent evolution of nitrogenase genes and 16S rRNA in Rhizobium species and other nitrogen fixing bacteria. Arch Microbiol 142:342–348

    Article  CAS  Google Scholar 

  12. Ueda T, Suga Y, Yahiro N, Matsuguchi T (1995) Phylogeny of Sym plasmids of rhizobia by PCR-based sequencing of a nodC segment. J Bacteriol 177:468–472

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Diouf D, Fall D, Chaintreuil C, Ba AT, Dreyfus B, Neyra M, Ndoye I, Moulin L (2010) Phylogenetic analyses of symbiotic genes and characterization of functional traits of Mesorhizobium spp. strains associated with the promiscuous species Acacia seyal Del. J Appl Microbiol 108:818–830. doi:10.1111/j.1365-2672.2009.04500.x

    Article  CAS  PubMed  Google Scholar 

  14. Sarr A, Neyra M, Houeibib MA, Ndoye I, Oihabi A, Lesueur D (2005) Rhizobial populations in soils from natural Acacia senegal and Acacia nilotica forests in Mauritania and the Senegal river valley. Microb Ecol 50:152–162

    Article  PubMed  Google Scholar 

  15. Fall D, Diouf D, Ourarhi M, Faye A, Abdelmounen H, Neyra M, Sylla SN, Missbah El Idrissi M (2008) Phenotypic and genotypic characteristics of Acacia senegal (L.) Willd. root-nodulating bacteria isolated from soils in the dryland part of Senegal. Lett Appl Microbiol 47:85–97. doi:10.1111/j.1472-765X.2008.02389.x

    Article  CAS  PubMed  Google Scholar 

  16. Diouf D, Samba-Mbaye R, Lesueur D, Ba AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal Del. rhizobial populations indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566. doi:10.1007/s00248-007-9243-0

    Article  CAS  PubMed  Google Scholar 

  17. Ndoye I, Gueye M, Danso SKA, Dreyfus B (1995) Nitrogen fixation in Faidherbia albida, Acacia raddiana, Acacia senegal and Acacia seyal estimated using the 15N isotope dilution technique. Plant Soil 172:175–180

    Article  CAS  Google Scholar 

  18. Bakhoum N, Le Roux C, Diouf D, Kane A, Ndoye F, Fall D, Duponnois R, Noba K, Sylla SN, Galiana A (2014) Distribution and diversity of Rhizobial populations associated with Acacia senegal (L.) Willd. Provenances in Senegalese Arid and Semiarid Regions. Open J Forest 4:136–143. doi:10.4236/ojf.2014.42019

    Article  Google Scholar 

  19. Sy A, Giraud E, Jourand P, Garcia N, Willems A, de Lajudie P, Prin Y, Neyra M, Gillis M, Boivin-Masson C, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Sarita S, Sharma PK, Priefer UB, Prell J (2005) Direct amplification of rhizobial nodC sequences from soil total DNA and comparison to nodC diversity of root nodule isolates. FEMS Microbiol Ecol 54:1–11

    Article  CAS  PubMed  Google Scholar 

  21. Laguerre G, Allard MR, Revoy F, Amarger N (1994) Rapid identification of Rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl Environ Microbiol 60:56–63

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Widmer F, Shaffer BT, Porteous LA, Seidler RJ (1999) Analysis of nifH gene pool complexity in soil and litter at a Douglas fir forest site in the Oregon cascade mountain range. Appl Environ Microbiol 65:374–380

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Nicholas KB, Nicholas HJ, Deerfield DWI (1997) Genedoc: analysis and visualization of genetic variation. EMB News 4:14

    Google Scholar 

  26. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  28. Bakhoum N, Ndoye F, Kane A, Assigbetse K, Fall D, Sylla SN, Noba K, Diouf D (2012) Impact of rhizobial inoculation on Acacia senegal (L.) Willd. growth in greenhouse and soil functioning in relation to seed provenance and soil origin. World J Microbiol Biotechnol 28:2567–2579. doi:10.1007/s11274-012-1066-6

    Article  PubMed  Google Scholar 

  29. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) The acetylene ethylene assay for N2 fixation: laboratory and field evaluation. Plant Physiol 43:185–207

    Google Scholar 

  30. Zhang JJ, Liu TY, Chen WF, Wang ET, Sui XH, Zhang XX, Li Y, Chen WX (2012) Mesorhizobium muleiense sp. nov., nodulating with Cicer arietinum L. in Xinjiang, China. Int J Syst Evol Microbiol 6:6

    Google Scholar 

  31. Degefu T, Wolde-meskel E, Frostegard A (2011) Multilocus sequence analyses reveal several unnamed Mesorhizobium genospecies nodulating Acacia species and Sesbania sesban trees in Southern regions of Ethiopia. Syst Appl Microbiol 34:216–226

    Article  CAS  PubMed  Google Scholar 

  32. Dobert RC, Breil BT, Triplett EW (1994) DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Mol Plant Microbe Interact 7:564–572

    Article  CAS  PubMed  Google Scholar 

  33. Laranjo M, Alexandre A, Rivas R, Velazquez E, Young JP, Oliveira S (2008) Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiol Ecol 66:391–400

    Article  CAS  PubMed  Google Scholar 

  34. Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113

    Article  CAS  PubMed  Google Scholar 

  35. Lan R, Reeves PR (2000) Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 8:396–401

    Article  CAS  PubMed  Google Scholar 

  36. Mergaert P, Van Montagu M, Holsters M (1997) Molecular mechanisms of Nod factor diversity. Mol Microbiol 25:811–817

    Article  CAS  PubMed  Google Scholar 

  37. Suominen L, Roos C, Lortet G, Paulin L, Lindstrom K (2001) Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 18:907–916

    Article  CAS  PubMed  Google Scholar 

  38. Laranjo M, Young JP, Oliveira S (2012) Multilocus sequence analysis reveals multiple symbiovars within Mesorhizobium species. Syst Appl Microbiol 35:359–367

    Article  CAS  PubMed  Google Scholar 

  39. Moulin L, Bena G, Boivin-Masson C, Stepkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  CAS  PubMed  Google Scholar 

  40. Barcellos FG, Menna P, da Silva Batista JS, Hungria M (2007) Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol 73:2635–2643. doi:10.1128/AEM.01823-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Vinuesa P, Leon-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Perez-Galdona R, Werner D, Martinez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575. doi:10.1099/ijs.0.63292-0

    Article  CAS  PubMed  Google Scholar 

  42. Wang H, Man CX, Wang ET, Chen WX (2009) Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. Plant Soil 314:169–182

    Article  CAS  Google Scholar 

  43. Alexandre A, Brigido C, Laranjo M, Rodrigues S, Oliveira S (2009) Survey of Chickpea Rhizobia diversity in Portugal reveals the predominance of species distinct from Mesorhizobium ciceri and Mesorhizobium mediterraneum. Microb Ecol 58:930–941. doi:10.1007/s00248-009-9536-6

    Article  PubMed  Google Scholar 

  44. Kalita M, Stepkowski T, Lotocka B, Malek W (2006) Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol 186:87–97

    Article  CAS  PubMed  Google Scholar 

  45. Rogel MA, Ormeno-Orrillo E, Martinez Romero E (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104

    Article  PubMed  Google Scholar 

  46. Faghire M, Mandri B, Oufdou K, Bargaz A, Ghoulam C, Ramirez-Bahena MH, Velazquez E, Peix A (2012) Identification at the species and symbiovar levels of strains nodulating Phaseolus vulgaris in saline soils of the Marrakech region (Morocco) and analysis of the otsA gene putatively involved in osmotolerance. Syst Appl Microbiol 35:156–164

    Article  CAS  PubMed  Google Scholar 

  47. Dreyfus BL, Diem HG, Freire J, Keya SO, Dommergues YR (1987) Nitrogen fixation in tropical agriculture and forestry. In: E, JD, Dommergues YR, Nyns EJ, Ratleedge C (eds) Microbial Technology in the developing World. Oxford University Press, Oxford, New York, Toronto, pp 7–50

  48. Pueppke SG, Broughton WJ (1999) Rhizobium sp. strain NGR234 and R. fredii USDA257 share exceptionally broad, nested host ranges. Mol Plant Microbe Interact 12:293–318. doi:10.1094/MPMI.1999.12.4.293

    Article  CAS  PubMed  Google Scholar 

  49. Leon-Barrios M, Lorite MJ, Donate-Correa J, Sanjuan J (2009) Ensifer meliloti bv. lancerottense establishes nitrogen-fixing symbiosis with Lotus endemic to the Canary Islands and shows distinctive symbiotic genotypes and host range. Syst Appl Microbiol 32:413–420

    Article  CAS  PubMed  Google Scholar 

  50. Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68:4025–4034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bala A, Giller KE (2007) Relationships between rhizobial diversity and host legume nodulation and nitrogen fixation in tropical ecosystems. Nutr Cycl Agroecosys 76:2–3

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by ACACIAGUM INCO STREP Contract Number 032233 and by a grant for N. BAKHOUM from the SCAC (Service de Cooperation et d’Action Culturelle) of France Embassy in Senegal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niokhor Bakhoum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhoum, N., Galiana, A., Le Roux, C. et al. Phylogeny of Nodulation Genes and Symbiotic Diversity of Acacia senegal (L.) Willd. and A. seyal (Del.) Mesorhizobium Strains from Different Regions of Senegal. Microb Ecol 69, 641–651 (2015). https://doi.org/10.1007/s00248-014-0507-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0507-1

Keywords

Navigation