Skip to main content

Advertisement

Log in

Heterotrophic Communities Supplied by Ancient Organic Carbon Predominate in Deep Fennoscandian Bedrock Fluids

  • ENVIRONMENTAL MICROBIOLOGY
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The deep subsurface hosts diverse life, but the mechanisms that sustain this diversity remain elusive. Here, we studied microbial communities involved in carbon cycling in deep, dark biosphere and identified anaerobic microbial energy production mechanisms from groundwater of Fennoscandian crystalline bedrock sampled from a deep drill hole in Outokumpu, Finland, by using molecular biological analyses. Carbon cycling pathways, such as carbon assimilation, methane production and methane consumption, were studied with cbbM, rbcL, acsB, accC, mcrA and pmoA marker genes, respectively. Energy sources, i.e. the terminal electron accepting processes of sulphate-reducing and nitrate-reducing communities, were assessed with detection of marker genes dsrB and narG, respectively. While organic carbon is scarce in deep subsurface, the main carbon source for microbes has been hypothesized to be inorganic carbon dioxide. However, our results demonstrate that carbon assimilation is performed throughout the Outokumpu deep scientific drill hole water column by mainly heterotrophic microorganisms such as Clostridia. The source of carbon for the heterotrophic microbial metabolism is likely the Outokumpu bedrock, mainly composed of serpentinites and metasediments with black schist interlayers. In addition to organotrophic metabolism, nitrate and sulphate are other possible energy sources. Methanogenic and methanotrophic microorganisms are scarce, but our analyses suggest that the Outokumpu deep biosphere provides niches for these organisms; however, they are not very abundant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahonen L, Kietäväinen R, Kortelainen N, Kukkonen IT, Pullinen A, Toppi T, Bomberg M, Itävaara M, Nousiainen A, Nyyssönen M (2011) Hydrogeological characteristics of the Outokumpu deep drill hole. In: Kukkonen IT (ed) Outokumpu Deep Drilling Project 2003–2010, Special paper 51. Geological Survey of Finland, Espoo, pp 151–168

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403

    Article  CAS  PubMed  Google Scholar 

  3. Auclair J, Lépine F, Parent S, Villemur R (2010) Dissimilatory reduction of nitrate in seawater by a Methylophaga strain containing two highly divergent narG sequences. ISME J 4:1302

    Article  CAS  PubMed  Google Scholar 

  4. Auguet J, Borrego CM, Bañeras L, Casamayor EO (2008) Fingerprinting the genetic diversity of the biotin carboxylase gene (accC) in aquatic ecosystems as a potential marker for studies of carbon dioxide assimilation in the dark. Environ Microbiol 10:2527

    Article  CAS  PubMed  Google Scholar 

  5. Baker BJ, Moser DP, MacGregor BJ, Fishbain S, Wagner M, Fry NK, Jackson B, Speolstra N, Loos S, Takai K (2003) Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State. Environ Microbiol 5:267

    Article  PubMed  Google Scholar 

  6. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Alber BE, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447

    Article  CAS  PubMed  Google Scholar 

  7. Berg IA (2011) Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol 77:1925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Boden R, Cunliffe M, Scanlan J, Moussard H, Kits KD, Klotz MG, Jetten MS, Vuilleumier S, Han J, Peters L, Mikhailova N, Teshima H, Tapia R, Kyrpides N, Ivanova N, Pagani I, Cheng JF, Goodwin L, Han C, Hauser L, Land ML, Lapidus A, Lucas S, Pitluck S, Woyke T, Stein L, Murrell JC (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J Bacteriol 193:7001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brazelton WJ, Morrill PL, Szponar N, Schrenk MO (2013) Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 79:3906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Casamayor EO, García-Cantizano J, Pedrós-Alió C (2008) Carbon dioxide fixation in the dark by photo-synthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces. Limnol Oceanogr 53:1193

    Article  CAS  Google Scholar 

  11. Cheng YS, Halsey JL, Fode KA, Remsen CC, Collins ML (1999) Detection of methanotrophs in groundwater by PCR. Appl Environ Microbiol 65:648

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Daumas S, Cord-Ruwisch R, Garcia J (1988) Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water. Antonie Van Leeuwenhoek 54:165

    Article  CAS  PubMed  Google Scholar 

  13. Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG (2009) Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol 59:1064

    Article  CAS  PubMed  Google Scholar 

  14. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ettwig KF, Shima S, De Pas‐Schoonen V, Katinka T, Kahnt J, Medema MH, Op Den C, Huub JM, Jetten MS, Strous M (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164

    Article  CAS  PubMed  Google Scholar 

  16. Fardeau ML, Ollivier B, Patel BK, Dwivedi P, Ragot M, Garcia JL (1995) Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. Int J Syst Bacteriol 45:218

    Article  CAS  PubMed  Google Scholar 

  17. Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF (2008) Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann N Y Acad Sci 1125:230

    Article  CAS  PubMed  Google Scholar 

  18. Gagen EJ, Denman SE, Padmanabha J, Zadbuke S, Al Jassim R, Morrison M, McSweeney CS (2010) Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol 76:7785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194

    Article  CAS  PubMed  Google Scholar 

  20. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696

    Article  PubMed  Google Scholar 

  21. Hales BA, Edwards C, Ritchie DA, Hall G, Pickup RW, Saunders JR (1996) Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl Environ Microbiol 62:668

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Hallbeck L, Pedersen K (2012) Culture-dependent comparison of microbial diversity in deep granitic groundwater from two sites considered for a Swedish final repository of spent nuclear fuel. FEMS Microbiol Ecol 81:66

    Article  CAS  PubMed  Google Scholar 

  23. Hallbeck L, Pedersen K (2008) Characterization of microbial processes in deep aquifers of the Fennoscandian Shield. Appl Geochem 23:1796

    Article  CAS  Google Scholar 

  24. Hammer Ø, Harper D, Ryan P (2001) Past: paleontological statistics software package for education and data analysis. Paleontología Electrónica 4: 1–9. URL Http://palaeo-Electronica.org/2001_1/past/issue1_01.Html

  25. Hoehler TM, Jørgensen BB (2013) Microbial life under extreme energy limitation. Nat Rev Microbiol 11:83

    Article  CAS  PubMed  Google Scholar 

  26. Itävaara M, Nyyssönen M, Kapanen A, Nousiainen A, Ahonen L, Kukkonen I (2011) Characterization of bacterial diversity to a depth of 1500 m in the Outokumpu deep borehole, Fennoscandian Shield. FEMS Microbiol Ecol 77:295

    Article  PubMed  Google Scholar 

  27. Jetten MS, Strous M, Pas‐Schoonen KT, Schalk J, Dongen UG, Graaf AA, Logemann S, Muyzer G, Loosdrecht M, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22:421

    Article  CAS  PubMed  Google Scholar 

  28. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kietäväinen R, Ahonen L, Kukkonen IT, Hendriksson N, Nyyssönen M, Itävaara M (2013) Characterisation and isotopic evolution of saline waters of the Outokumpu Deep Drill Hole, Finland—implications for water origin and deep terrestrial biosphere. Appl Geochem 32:37

    Article  Google Scholar 

  30. Kukkonen IT, Rath V, Kivekäs L, Šafanda J, Čermak V (2011) Geothermal studies of the Outokumpu Deep Drill Hole, Finland: vertical variation in heat flow and palaeoclimatic implications. Phys Earth Planet Inter 188:9

    Article  Google Scholar 

  31. Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Lever MA (2013) Functional gene surveys from ocean drilling expeditions—a review and perspective. FEMS Microbiol Ecol 84:1

    Article  CAS  PubMed  Google Scholar 

  33. Lever MA (2012) Acetogenesis in the energy-starved deep biosphere—a paradox? Front Microbiol 2:284

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lin L, Hall J, Onstott T, Gihring T, Lollar BS, Boice E, Pratt L, Lippmann-Pipke J, Bellamy RE (2006) Planktonic microbial communities associated with fracture-derived groundwater in a deep gold mine of South Africa. Geomicrobiol J 23:475

    Article  CAS  Google Scholar 

  35. Llirós M, Alonso‐Sáez L, Gich F, Plasencia A, Auguet O, Casamayor EO, Borrego CM (2011) Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon. FEMS Microbiol Ecol 77:370

    Article  PubMed  Google Scholar 

  36. López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57:399

    Article  PubMed  Google Scholar 

  37. Nakatsu CH, Hristova K, Hanada S, Meng XY, Hanson JR, Scow KM, Kamagata Y (2006) Methylibium petroleiphilum gen. nov., sp. nov., a novel methyl tert-butyl ether-degrading methylotroph of the Betaproteobacteria. Int J Syst Evol Microbiol 56:983

    Article  CAS  PubMed  Google Scholar 

  38. Nanba K, King GM, Dunfield K (2004) Analysis of facultative lithotroph distribution and diversity on volcanic deposits by use of the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase. Appl Environ Microbiol 70:2245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nealson KH, Inagaki F, Takai K (2005) Hydrogen-driven subsurface lithoautotrophic microbial ecosystems (SLiMEs): do they exist and why should we care? Trends Microbiol 13:405

    Article  CAS  PubMed  Google Scholar 

  40. Nicolaisen MH, Ramsing NB (2002) Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods 50:189

    Article  CAS  PubMed  Google Scholar 

  41. Nurmi PA, Kukkonen IT (1986) A new technique for sampling water and gas from deep drill holes. Can J Earth Sci 23:1450

    Article  CAS  Google Scholar 

  42. Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, Itävaara M, Auvinen P (2014) Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J 8:126–138

    Article  PubMed Central  PubMed  Google Scholar 

  43. Nyyssönen M, Bomberg M, Kapanen A, Nousiainen A, Pitkänen P, Itävaara M (2012) Methanogenic and sulphate-reducing microbial communities in deep groundwater of crystalline rock fractures in Olkiluoto, Finland. Geomicrobiol J 29:863

    Article  Google Scholar 

  44. Okland I, Huang S, Dahle H, Thorseth IH, Pedersen RB (2012) Low temperature alteration of serpentinized ultramafic rock and implications for microbial life. Chem Geol 318:75

    Article  Google Scholar 

  45. Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499:205

    Article  CAS  PubMed  Google Scholar 

  46. Osaka T, Yoshie S, Tsuneda S, Hirata A, Iwami N, Inamori Y (2006) Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microb Ecol 52:253

    Article  CAS  PubMed  Google Scholar 

  47. Pedersen K, Arlinger J, Eriksson S, Hallbeck A, Hallbeck L, Johansson J (2008) Numbers, biomass and cultivable diversity of microbial populations relate to depth and borehole-specific conditions in groundwater from depths of 4–450 m in Olkiluoto, Finland. ISME J 2:760

    Article  CAS  PubMed  Google Scholar 

  48. Pedersen K (2000) Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9

    Article  CAS  PubMed  Google Scholar 

  49. Pedersen K (1997) Microbial life in deep granitic rock. FEMS Microbiol Rev 20:399

    Article  CAS  Google Scholar 

  50. Pedersen K, Ekendahl S (1992) Assimilation of CO2 and introduced organic compounds by bacterial communities in groundwater from southeastern Sweden deep crystalline bedrock. Microb Ecol 23:1

    Article  CAS  PubMed  Google Scholar 

  51. Petsch S, Edwards K, Eglinton T (2005) Microbial transformations of organic matter in black shales and implications for global biogeochemical cycles. Palaeogeogr Palaeoclimatol Palaeoecol 219:157

    Article  Google Scholar 

  52. Petsch ST, Eglington TI, Edwards KJ (2001) 14C-dead living biomass: evidence for microbial assimilation of ancient organic carbon during shale weathering. Science 292:1127

    Article  CAS  PubMed  Google Scholar 

  53. Proskurowski G, Lilley MD, Seewald JS, Fruh-Green GL, Olson EJ, Lupton JE, Sylva SP, Kelley DS (2008) Abiogenic hydrocarbon production at lost city hydrothermal field. Science 319:604

    Article  CAS  PubMed  Google Scholar 

  54. Purkamo L, Bomberg M, Nyyssönen M, Kukkonen I, Ahonen L, Kietäväinen R, Itävaara M (2013) Dissecting the deep biosphere: retrieving authentic microbial communities from packer-isolated deep crystalline bedrock fracture zones. FEMS Microbiol Ecol 85:324

    Article  CAS  PubMed  Google Scholar 

  55. Rosewarne CP, Greenfield P, Li D, Tran-Dinh N, Midgley DJ, Hendry P (2013) Draft genome sequence of Methanobacterium sp. Maddingley, reconstructed from metagenomic sequencing of a methanogenic microbial consortium enriched from coal-seam gas formation water. Genome Announc 1:e00081–12. doi:10.1128/genomeA.00081-12

    PubMed Central  PubMed  Google Scholar 

  56. Roslev P, Larsen MB, Jørgensen D, Hesselsoe M (2004) Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods 59:381

    Article  CAS  PubMed  Google Scholar 

  57. Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29:358

    Article  CAS  PubMed  Google Scholar 

  58. Sahl JW, Schmidt R, Swanner ED, Mandernack KW, Templeton AS, Kieft TL, Smith RL, Sanford WE, Callaghan RL, Mitton JB, Spear JR (2008) Subsurface microbial diversity in deep-granitic-fracture water in Colorado. Appl Environ Microbiol 74:143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575

    Article  CAS  Google Scholar 

  60. Shlimon AG, Friedrich MW, Niemann H, Ramsing NB, Finster K (2004) Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int J Syst Evol Microbiol 54:759

    Article  CAS  PubMed  Google Scholar 

  61. Spiridonova E, Berg I, Kolganova T, Ivanovsky R, Kuznetsov B, Tourova T (2004) An oligonucleotide primer system for amplification of the ribulose-1, 5-bisphosphate carboxylase/oxygenase genes of bacteria of various taxonomic groups. Microbiology 73:316

    Article  CAS  Google Scholar 

  62. Swanner E, Templeton A (2011) Potential for nitrogen fixation and nitrification in the granite-hosted subsurface at Henderson Mine, CO. Front Microbiol 2:254

    Article  PubMed Central  PubMed  Google Scholar 

  63. Takai K, Campbell BJ, Cary SC, Suzuki M, Oida H, Nunoura T, Hirayama H, Nakagawa S, Suzuki Y, Inagaki F, Horikoshi K (2005) Enzymatic and genetic characterization of carbon and energy metabolisms by deep-sea hydrothermal chemolithoautotrophic isolates of Epsilonproteobacteria. Appl Environ Microbiol 71:7310

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Taran LN, Onoshko MP, Mikhailov ND (2011) Structure and composition of organic matter and isotope geochemistry of the Palaeoproterozoic graphite and sulphide-rich metasedimentary rocks from the Outokumpu deep drill hole, eastern Finland. In: Kukkonen IT (ed) Outokumpu Deep Drilling Project 2003–2010, Special paper 51. Geological Survey of Finland, Espoo, pp 219–228

  65. Teske A, Biddle JF (2008) Analysis of deep subsurface microbial communities by functional genes and genomics. In Dilek et al. (ed) Links between geological processes, microbial activities & evolution of life, Springer, pp 159–176

  66. Tiago I, Veríssimo A (2013) Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization. Environ Microbiol 15:1687

    Article  CAS  PubMed  Google Scholar 

  67. Västi K (2011) Petrology of the drill hole R2500 at Outokumpu, eastern Finland—the deepest drill hole ever drilled in Finland. In: Kukkonen IT (ed) Outokumpu Deep Drilling Project 2003-2010, Special paper 51. Geological Survey of Finland, Espoo, pp 17–46

  68. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Welander PV, Metcalf WW (2005) Loss of the mtr operon in Methanosarcina blocks growth on methanol, but not methanogenesis, and reveals an unknown methanogenic pathway. Proc Natl Acad Sci U S A 102:10664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691

    Article  CAS  PubMed  Google Scholar 

  71. Zhu J, Liu X, Dong X (2011) Methanobacterium movens sp. nov. and Methanobacterium flexile sp. nov., isolated from lake sediment. Int J Syst Evol Microbiol 61:2974

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Academy of Finland, The Kone Foundation and Finnish Research Program on Nuclear Waste Management (KYT). Mirva Pyrhönen, Aura Nousiainen and Marjo Öster are acknowledged for their work with sampling at Outokumpu drill hole as well as in laboratory. Riikka Kietäväinen is thanked for commenting on the manuscript and Dr. David Thomas for critical language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotta Purkamo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Purkamo, L., Bomberg, M., Nyyssönen, M. et al. Heterotrophic Communities Supplied by Ancient Organic Carbon Predominate in Deep Fennoscandian Bedrock Fluids. Microb Ecol 69, 319–332 (2015). https://doi.org/10.1007/s00248-014-0490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0490-6

Keywords

Navigation