Skip to main content
Log in

Microbial Associates of the Vine Mealybug Planococcus ficus (Hemiptera: Pseudococcidae) under Different Rearing Conditions

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Sap-feeding insects harbor diverse microbial endosymbionts that play important roles in host ecology and evolution, including contributing to host pest status. The vine mealybug, Planococcus ficus, is a serious pest of grapevines, vectoring a number of pathogenic grape viruses. Previous studies have shown that virus transmission is abolished when mealybugs are raised in the laboratory on potato. To examine the possible role of microbial symbionts in virus transmission, the archaeal, bacterial, and fungal microbiota of field and laboratory P. ficus were characterized using molecular and classical microbiological methods. Lab and field colonies of P. ficus harbored different microbiota. While both were dominated by the bacterial obligate nutritional symbionts Moranella and Tremblaya, field samples also harbored a third bacterium that was allied with cluster L, a lineage of bacterial symbionts previously identified in aphids. Archaea were not found in any of the samples. Fungal communities in field-collected mealybugs were dominated by Metschnikowia and Cladosporium species, while those from laboratory-reared mealybugs were dominated by Alternaria and Cladosporium species. In conclusion, this study has identified a diverse set of microbes, most of which appear to be facultatively associated with P. ficus, depending on environmental conditions. The role of various members of the mealybug microbiome, as well as how the host plant affects microbial community structure, remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Assaf LH, Haleem RA, Abdullah SK (2011) Association of entomopathogenic and other opportunistic fungi with insects in dormant locations. Jordan J Biol Sci 4:87–92

    Google Scholar 

  2. Ben-Dov Y (1994) A systematic catalogue of the mealybugs of the world (Insecta: Homoptera: Coccoidea: Pseudococcidae and Putoidae) with data on geographical distribution, host plants, biology and economic importance. Intercept Ltd., Andover

    Google Scholar 

  3. Bensch K, Groenewald JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Crous PW (2010) Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Stud Mycol 67:1–94

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38:433–437

    Article  Google Scholar 

  5. Bressan A, Arneodo JD, Simonato M, Haines WP, Boudon-Padieu E (2009) Characterization and evolution of two bacteriome-inhabiting symbionts in cixiid planthoppers (Hemiptera: Fulgoromorpha: Pentastirini). Environ Microbiol 11:3265–3279

    Article  CAS  PubMed  Google Scholar 

  6. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

    Google Scholar 

  7. Burke GR, Normark BB, Favret C, Moran NA (2009) Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol 75:5328–5335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Cariveau DP, Powell JE, Koch H, Winfree R, Moran NA (2014) Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. doi:10.1038/ismej.2014.68

    PubMed  Google Scholar 

  9. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet 7:e1002272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Charles JG (1982) Economic damage and preliminary thresholds for mealybugs in Auckland vineyards. N Z J Agric Res 25:415–420

    Article  Google Scholar 

  11. Chen H, Rangasamy M, Tan SY, Wang H, Siegfried BD (2010) Evaluation of five methods for total DNA extraction from western corn rootworm beetles. PLoS ONE 5:e11963

  12. Christias CH, Hatzipapas P, Dara A, Kaliafas A, Chrysanthis G (2001) Alternaria alternata, a new pathotype pathogenic to aphids. BioControl 46:105–124

    Article  Google Scholar 

  13. Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Rizza MD (2011) Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agric Res 71:231–239

    Article  Google Scholar 

  14. Dillon RJ, Dillon VM (2004) The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol 49:71–92

    Article  CAS  PubMed  Google Scholar 

  15. Dong SZ, Pang K, Bai X, Yu XP, Hao PY (2011) Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Curr Microbiol 62:1133–1138

    Article  CAS  PubMed  Google Scholar 

  16. Dowd SE, Sun Y, Wolcott RD, Domingo A, Carroll JA (2008) Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella infected pigs. Foodborne Pathog Dis 5:459–472

    Article  CAS  PubMed  Google Scholar 

  17. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.1. Available from: URL http://www.geneious.com

  18. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113

    Article  Google Scholar 

  19. Eken C, Hayat R (2009) Preliminary evaluation of Cladosporium cladosporioides (Fresen.) de Vries in laboratory conditions, as a potential candidate for biocontrol of Tetranychus urticae Koch. World J Microbiol Biotechnol 25:489–492

    Article  Google Scholar 

  20. Engelbrecht DJ, Kasdorf GGF (1990) Transmission of grapevine leafroll disease and associated closteroviruses by the vine mealybug Planococcus ficus. Phytophylactica 22:341–346

    Google Scholar 

  21. Franke-Whittle IH, O’Shea MG, Leonard GJ, Sly LI (2004) Molecular investigation of the microbial populations of the pink sugarcane mealybug, Saccharicoccus sacchari. Ann Microbiol 54:455–470

    CAS  Google Scholar 

  22. Frohlich T-JI, Bedford I, Markham P, Brown J (1999) A phylogeographical analysis of the Bemisia tabaci species complex based on mitochondrial DNA markers. Mol Ecol 8:1683–1691

    Article  PubMed  Google Scholar 

  23. Fukatsu T, Ishikawa H (1996) Phylogenetic position of yeast-like symbiont of Hamiltonaphis styraci (Homoptera, Aphididae) based on 18S rDNA sequence. Insect Biochem Mol Biol 4:383–388

    Article  Google Scholar 

  24. Fukatsu T, Nikoh N (2000) Endosymbiotic microbiota of the bamboo pseudococcid Antonina crawli (Insecta, Homoptera). Appl Environ Microbiol 66:643–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Gibson CM, Hunter MS (2010) Extraordinarily widespread and fantastically complex: comparative biology of endosymbiotic bacterial and fungal mutualists of insects. Ecol Lett 13:223–234

    Article  PubMed  Google Scholar 

  26. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, Tzuri GA, Horowitz R, Belausov E, Mozes-Daube N, Kontsedalov K, Gershon M, Gal S, Katzir N, Zchori-Fein E (2006) Identification and localization of a Rickettsia sp. in Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 72:3646–3652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M, Brumin M, Sobol I, Czosnek H, Vavre F, Fleury F, Ghanim M (2010) The transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is correlated with the presence of a specific symbiotic bacterium species. J Virol 84:9310–9317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hammer O, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  29. Hara K, Shinzato N, Seo M, Oshima T, Yamagishi A (2002) Phylogenetic analysis of symbiotic archaea living in the gut of xylophagous cockroaches. Microbes Environ 17:185–190

    Article  Google Scholar 

  30. Henry LM, Peccoud J, Simon JC, Hadfield JD, Maiden MJ, Ferrari J, Godfray HCJ (2013) Horizontally transmitted symbionts and host colonization of ecological niches. Curr Biol 23:1713–1717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hosokawa T, Kikuchi Y, Shimada M, Fukatsu T (2007) Obligate symbiont involved in pest status of host insect. Proc R Soc B Biol Sci 274:1979–1984

    Article  CAS  Google Scholar 

  32. Hughes GL, Allsopp PG, Webb RI, Yamada R, Iturbe-Ormaetxe I, Brumbley SM, O’Neill SL (2011) Identification of yeast associated with the planthopper, Perkinsiella saccharicida: potential applications for Fiji leaf gall control. Curr Microbiol 63:392–401

    Article  CAS  PubMed  Google Scholar 

  33. Iasur-Kruh L, Weintraub PG, Mozes-Daube N, Robinson WE, Perlman SJ, Zchori-Fein E (2013) Novel Rickettsiella bacterium in the leafhopper Orosius albicinctus (Hemiptera: Cicadellidae). Appl Environ Microbiol 79:4246–4252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kikuchi Y, Hosokawa T, Fukatsu T (2011) Specific developmental window for establishment of an insect-microbe gut symbiosis. Appl Environ Microbiol 77:4075–4081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Koga R, Nikoh N, Matsuura Y, Meng XY, Fukatsu T (2012) Mealybugs with distinct endosymbiotic systems living on the same host plant. FEMS Microbiol Ecol 83:93–100

    Article  PubMed  Google Scholar 

  36. Kwong WK, Moran NA (2013) Cultivation and characterization of the gut symbionts of honey bees and bumble bees: description of Snodgrassella alvi gen. nov., sp. nov., a member of the family Neisseriaceae of the Betaproteobacteria, and Gilliamella apicola gen. nov., sp. nov., a member of Orbaceae fam. nov., Orbales ord. nov., a sister taxon to the order ‘Enterobacteriales’ of the Gammaproteobacteria. Int J Syst Evol Microbiol 63:2008–2018

    Article  CAS  PubMed  Google Scholar 

  37. Lamelas A, Pérez-Brocal V, Gómez-Valero L, Gosalbes MJ, Moya A, Latorre A (2008) Evolution of the secondary symbiont “Candidatus Serratia symbiotica” in aphid species of the subfamily Lachninae. Appl Environ Microbiol 74:4236–4240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  39. Malakar-Kuenen R, Daane KM, Bentley W, Yokota GY, Martin L, Godfrey K, Ball J (2001). Population dynamics of the vine mealybug and its natural enemies in the Coachella and San Joaquin Valleys. University of California, Kearney Plant Protection Group, Plant Protection Quarterly 11:1–5

  40. Mansour R, Suma P, Mazzeo G, La Pergola A, Pappalardo V, Lebdi KG, Russo A (2012) Interactions between the ant Tapinoma nigerrimum (Hymenoptera: Formicidae) and the main natural enemies of the vine and citrus mealybugs (Hemiptera: Pseudococcidae). Biocontrol Sci Tech 22:527–537

  41. Martinson VG, Moy J, Moran NA (2012) Establishment of characteristic gut bacteria during development of the honeybee worker. Appl Environ Microbiol 78:2830–2840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Minafra A, Hadidi A (1994) Sensitive detection of grapevine virus A, B, or leafroll-associated virus III from viruliferous mealybugs and infected tissue by cDNA amplification. J Virol Methods 47:175–188

    Article  CAS  PubMed  Google Scholar 

  43. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  44. Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  45. Moran NA, Tran P, Gerardo NM (2005) Symbiosis and insect diversification: an ancient symbiont of sap-feeding insects from the bacterial phylum Bacteroidetes. Appl Environ Microbiol 71:8802–8810

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Morin S, Ghanim M, Sobol I, Czosnek H (2000) The GroEL protein of the whitefly Bemisia tabaci interacts with the coat protein of transmissible and nontransmissible begomoviruses in the yeast two-hybrid system. Virology 276:404–416

    Article  CAS  PubMed  Google Scholar 

  47. Munson MA, Baumann P, Kinsey MG (1991) Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated, primary endosymbionts of aphids. Int J Syst Evol Microbiol 41:566–568

    Google Scholar 

  48. Muyzer G, Brinkhoff T, Nubel U, Santegoeds C, Schafer H, Wawer C (1998) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 3.4.4.1–3.4.4.27

    Google Scholar 

  49. Nardon P, Grenier AM (1989) Endosymbiosis in Coleoptera: biological, biochemical, and genetic aspects pp. In: Schwemmler W, Gassner G (eds) Insect endocytobiosis: morphology, physiology, genetics, evolution. CRC Press, Boca Raton, pp 175–216

    Google Scholar 

  50. Nguyen NH, Suh SO, Blackwell M (2007) Five novel Candida species in insect-associated yeast clades isolated from Neuroptera and other insects. Mycologia 99:842–858

    Article  CAS  PubMed  Google Scholar 

  51. Nguyen NH, Suh SO, Erbil CK, Blackwell M (2006) Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. Mycol Res 110:346–356

    Article  CAS  PubMed  Google Scholar 

  52. Noda H, Koizumi Y (2003) Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeast-like symbiotes of rice planthoppers and anobiid beetles. Insect Biochem Mol Biol 33:649–658

    Article  CAS  PubMed  Google Scholar 

  53. Noda H, Nakashima N, Koizumi M (1995) Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem Mol Biol 25:639–646

    Article  CAS  PubMed  Google Scholar 

  54. O’Donnell K (1992) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220

    Article  PubMed  Google Scholar 

  55. Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc. Roy Soc L B Biol Sci 275:293–299

  56. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacteria in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

  57. Paul K, Nonoh JO, Mikulski L, Brune A (2012) “Methanoplasmatales,” Thermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens. Appl Environ Microbiol 78:8245–8253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  59. Sasaki T, Kawamura M, Ishikawa H (1996) Nitrogen recycling in the brown planthopper, Nilaparvata lugens: involvement of yeast-like endosymbionts in uric acid metabolism. J Insect Physiol 42:125–129

    Article  CAS  Google Scholar 

  60. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger JJ, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Sforza R, Boudon-Padieu E, Greif C (2003) New mealybug species vectoring Grapevine leafroll-associated viruses-1 and-3 (GLRaV-1 and-3). Eur J Plant Pathol 109:975–981

    Article  Google Scholar 

  62. Shen SK, Dowd PF (1992) Detoxifying enzymes and insect symbionts. J Chem Educ 69:796–799

    Article  CAS  Google Scholar 

  63. Singh ST, Kumar J, Thomas A, Ramamurthy VV, Rajagopal R (2013) Detection and localization of Rickettsia sp. in mealybug. Environ Entomol 42:711–716

    Article  CAS  PubMed  Google Scholar 

  64. Staubach F, Baines JF, Künzel S, Bik EM, Petrov DA (2013) Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment. PLoS One 8:e70749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Suh SO, Gibson CM, Blackwell M (2004) Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int J Syst Evol Microbiol 54:1883–1890

    Article  CAS  PubMed  Google Scholar 

  66. Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–5072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Tang M, Lv L, Jing S, Zhu L, He G (2010) Bacterial symbionts in the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Environ Microbiol 76:1740–1745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tanne E, Ben-Dov Y, Raccah B (1989) Transmission of the corky-bark disease by the mealybug Planococcus ficus. Phytoparasitica 17:55

    Article  Google Scholar 

  70. Teixeira L, Ferreira A, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:2753–2763

    Article  CAS  Google Scholar 

  71. Tsai CW, Chau J, Fernandez L, Bosco D, Daane KM, Almeida RPP (2008) Transmission of Grapevine leafroll-associated virus 3 by the vine mealybug (Planococcus ficus). Phytopatology 98:1093–1098

    Article  Google Scholar 

  72. van den Heuvel JFJM, Verbeek M, van der Wilk F (1994) Endo-symbiotic bacteria associated with circulative transmission of potato leafroll virus by Myzus persicae. J Gen Virol 75:2559–2565

    Article  PubMed  Google Scholar 

  73. Vega FE, Dowd PF (2005) The role of yeasts as insect endosymbionts pp. In: Vega FE, Blackwell M (eds) Insect-fungal associations: ecology and evolution. University Press, New York, Oxford, pp 211–243

    Google Scholar 

  74. von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug beta-proteobacterial endosymbionts contain gamma-proteobacterial symbionts. Nature 412:433–436

    Article  Google Scholar 

  75. Walton VM (2003) Development of an integrated pest management system for vine mealybug, Planococcus ficus (Signoret), in vineyards in the Western Cape Province, South Africa. Dissertation (PhD), Stellenbosch University

  76. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751

    Article  CAS  PubMed  Google Scholar 

  77. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, pp 315–322

    Chapter  Google Scholar 

  78. Woolfolk SW, Inglis GD (2004) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol Cont 29:155–168

  79. Yaman M, Radek R (2008) Identification, distribution and occurrence of the ascomycete Metschnikowia typographi in the great spruce bark beetle, Dendroctonus micans. Folia Microbiol 53:427–432

    Article  CAS  Google Scholar 

  80. Zada A, Dunkelblum E, Assael F, Harel M, Cojocaru M, Mendel Z (2003) Sex pheromone of the vine mealybug, Planococcus ficus in Israel: occurrence of a second component in a mass-reared population. J Chem Ecol 29:977–988

    Article  CAS  PubMed  Google Scholar 

  81. Zheng L, Crippen TL, Singh B, Tarone AM, Dowd S, Yu Z, Tomberlin JK (2013) A survey of bacterial diversity from successive life stages of black soldier fly (Diptera: Stratiomyidae) by using 16S rDNA pyrosequencing. J Med Entomol 50:647–658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by Research Grant No. CA-9110-09 from BARD, the United States-Israel Binational Agricultural Research and Development Fund to EZF, and by an National Sciences and Engineering Research Council of Canada (NSERC) Special Research Opportunity Canada-Israel Grant (SROCI-386044-2009) to SP. SP acknowledges support from the Integrated Microbial Biodiversity Program of the Canadian Institute for Advanced Research. LIK, SD, and EZF acknowledge support from the Chief Scientist, Israel Ministry of Agriculture. LIK acknowledges support from the Lady Davis Fellowship Trust, Technion. Thanks are extended to Eduard Belausov for technical support and Prof. Oded Beja for scientific support. The comments from two anonymous reviewers greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Einat Zchori-Fein.

Additional information

Steve J Perlman and Einat Zchori-Fein both are co-senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 16 kb)

Fig 1S

DGGE analysis of bacterial 16S rRNA gene showing the bacterial community composition of young and adult mealybugs from grapevine and potato. Bands that were successfully sequenced are labeled. (PPTX 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iasur-Kruh, L., Taha-Salaime, L., Robinson, W.E. et al. Microbial Associates of the Vine Mealybug Planococcus ficus (Hemiptera: Pseudococcidae) under Different Rearing Conditions. Microb Ecol 69, 204–214 (2015). https://doi.org/10.1007/s00248-014-0478-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0478-2

Keywords

Navigation