Skip to main content

Advertisement

Log in

Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r\(^{2}_{apparent} \,=\, 0.76, \text {RMSE} \,=\, 4.29; \mathrm {r}^{2}_{jack} \,=\, 0.68, \text {RMSEP} \,=\, 5.18\)). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Charman DJ (2002) Peatlands and environmental change. Wiley-Blackwell

  2. Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philos Trans R Soc A Math Phys Eng Sci 363:2891–2913

    Article  CAS  Google Scholar 

  3. Belyea LR, Baird AJ (2006) Beyond the limits to peat bog growth: cross-scale feedback in peatland development. Ecol Monogr 76:299–322

    Article  Google Scholar 

  4. Page S E, Rieley J O, Banks B G (2008) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818

    Article  Google Scholar 

  5. Moore S, Evans C D, Page S E, Garnett M H, Jones T, Freeman C, Hooijer A, Wiltshire A J, Limin S H, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663

    Article  CAS  PubMed  Google Scholar 

  6. Anderson JAR (1964) The structure and development of the peat swamps of Sarawak and Brunei. J Trop Geogr 18:7–16

    Google Scholar 

  7. Joosten H (2009) The global peatland CO 2 picture. Wetlands international. Ede: 33p

  8. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145

    Article  Google Scholar 

  9. Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 15:2311–2320

    Article  Google Scholar 

  10. Lähteenoja O, Page S E (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J Geophys Res 116:G02025

    Google Scholar 

  11. Lähteenoja O, Reategui Y, Rasanen M, del Castillo D, Oinonen M, Page SE (2012) The large Amazonian peatland carbon sink in the subsiding astaza-Marañón foreland basin, Peru. Glob Chang Biol 18:164–178

    Article  Google Scholar 

  12. Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503

    Article  Google Scholar 

  13. Page S E, Siegert F, Rieley J O, Boehm H D V, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia in 1997. Nature 420:61–65

    Article  CAS  PubMed  Google Scholar 

  14. Miettinen J, Shi C, Liew SC (2012) Two decades of destruction in Southeast Asia’s peat swamp forests. Front Ecol Environ 10:124–128

    Article  Google Scholar 

  15. Mitchell E A D, Charman D J, Warner B G (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137

    Article  Google Scholar 

  16. Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. The Holocene 8:261–273

    Article  Google Scholar 

  17. Lamentowicz M, Mitchell E A D (2005) The ecology of testate amoebae (Protists) in sphagnum in North-western Poland in relation to peatland ecology. Microb Ecol 50(1):48–63

    Article  PubMed  Google Scholar 

  18. Charman DJ, Blundell A, ACCROTELM Members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221

    Article  Google Scholar 

  19. Swindles G T, Charman D J, Roe H M, Sansum P A (2009) Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: implications for Holocene palaeoclimate studies. J Paleolimnol 42:123–140

    Article  Google Scholar 

  20. Turner TE, Swindles GT, Charman DJ, Blundell A (2013) Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr Palaeoclimatol Palaeoecol 369:395–408

    Article  Google Scholar 

  21. Amesbury M J, Mallon G, Charman D J, Hughes P D, Booth R K, Daley T J, Garneau M (2013) Statistical testing of a new testate amoebae transfer function for water-table depth reconstruction on ombrotrophic peatlands in Atlantic Canada and far north-eastern United States. J Quat Sci 28:27–39

    Article  Google Scholar 

  22. Lamarre A, Magnan G, Garneau M, Boucher E (In Press) A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quat Int

  23. Bobrov A A (2001) Findings of the tropical group testate amoebae (Protozoa: Testacea) at the far East (Sikhote Alin reserve). Biol Bull Russ Acad Sci 28:401–407

    Article  Google Scholar 

  24. Krashevska V, Bonkowski M, Maraun M, Scheu S (2007) Testate amoebae (protista) of an elevational gradient in the tropical mountain rain forest of Ecuador. Pedobiologia 51:319–331

    Article  Google Scholar 

  25. Krashevska V, Maraun M, Scheu S (2012) How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?. FEMS Microbiol Ecol 80:603–607

    Article  CAS  PubMed  Google Scholar 

  26. Martinez R, Ruiz D, Andrade M, Blacutt L, Pabon D, Jaimes E, Leon G, Villacis M, Quintana J, Montealegre E, Euscategui CH, Jorgensen PM (2011) Synthesis of the climate of the Tropical Andes. In: Herzog SK, Martinez R, Tiessen H (eds) Climate change and biodiversity in the Tropical Andes. MacArthur Foundation, Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), vol 348. Sao Jose dos Campos, Paris, pp 97–109. ISBN: 978-85-99875-05-6

    Google Scholar 

  27. Met Office (2011) Climate: observations, projections and impacts. Peru, Met Office. Exeter

  28. Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248

    Article  Google Scholar 

  29. De Vleeschouwer F, Chambers F M, Swindles G T (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7:1–10

    Google Scholar 

  30. Schulte EE, Hopkins BG (1996) Estimation of soil organic matter by weight-loss-on-ignition. In: FR Magdoff et al. (eds) Soil organic matter: analysis and interpretation. SSSA Spec. Publ. 46, Madison, WI

  31. Hendon D, Charman D J (1997) The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. The Holocene 7:199–205

    Article  Google Scholar 

  32. Payne R (2009) The standard preparation method for testate amoebae leads to selective loss of the smallest shells. Quat Newsl 119:16–20

    Google Scholar 

  33. Payne R, Mitchell E (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol 42:483–495

    Article  Google Scholar 

  34. Charman D J, Hendon D, Woodland W (2000) The identification of peatland testate amoebae. Quat Res Assoc Tech Guid 9:147p

    Google Scholar 

  35. Ogden CG, Hedley RH (eds) (1980) An atlas to freshwater testate amoebae. Oxford University Press, London

    Google Scholar 

  36. Mazei Y, Tsyganov A N (2006) Freshwater testate amoebae. KMK, Moscow

    Google Scholar 

  37. Meisterfeld R (2000) Arcellinida. The illustrated guide to the protozoa, 2nd edn, pp 827–859

  38. Meisterfeld R (2000) Testate amoebae with filopodia. The illustrated guide to the protozoa, 2nd edn, pp 1054–1083

  39. Swindles G T (2010) Dating recent peat profiles using spheroidal carbonaceous particles (SCPs). Mires Peat 7:1–10

    Google Scholar 

  40. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  41. Dale B, Dale A L (2002) Application of ecologically based statistical treatments to micropalaeontology. In: Haslett S K (ed) Quaternary environmental micropalaeontology. Arnold, London

    Google Scholar 

  42. Rao CR (1995) A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19:23–63

    Google Scholar 

  43. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  44. Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129

    Article  Google Scholar 

  45. McCune B, Grace JB (2002) Analysis of ecological communities. MJM Press

  46. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2012) vegan: Community Ecology Package. http://CRAN.R-project.org/package=vegan

  47. Core Team R (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria, http://www.R-project.org/

  48. Shannon C E (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423,623–656

    Article  Google Scholar 

  49. Magurran A E (1988) Ecological diversity and its measurement. Princeton University Press, Princeton

    Book  Google Scholar 

  50. Patterson R T, Kumar A (2000) Assessment of arcellacea (thecamoebian) assemblages, species and strains as contaminant indicators in variably contaminated James Lake, North Eastern Ontario. J Foramin Res 30:310–320

    Article  Google Scholar 

  51. Birks H J B (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew J S (eds) Statistical modelling of quaternary science data. Technical guide 5. Quaternary Research Association, Cambridge

    Google Scholar 

  52. Juggins S (2003) C2 user guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle Upon Tyne

  53. Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Phil Trans R Soc B 27:263–278

    Article  Google Scholar 

  54. Line JM, ter Braak CJF, Birks HJB (1994) WACALIB version 3.3: a computer program to reconstruct environmental variables from fossil assemblages by weighted-averaging and to derive sample-specific errors of prediction. J Paleolimnol 10:147–152

    Article  Google Scholar 

  55. Ivanov K E (1981) Water movement in Mirelands. Academic Press, London

    Google Scholar 

  56. Deflandre G (1936) Etude monographique sur le genre Nebela Leidy. Annales de Protistologie 5:201–286

    Google Scholar 

  57. Sullivan M E, Booth R K (2011) The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands. Microb Ecol 62:80–93

    Article  PubMed  Google Scholar 

  58. Turner T E, Swindles G T (2012) Ecology of testate amoebae in moorland with a complex fire history: implications for ecosystem monitoring and sustainable land management. Protist 163:844–855

    Article  PubMed  Google Scholar 

  59. Booth R K, Zygmunt J R (2005) Biogeography and comparative ecology of testate amoebae inhabiting Sphagnum-dominated peatlands in the Great Lakes and Rocky Mountain regions of North America. Divers Distrib 11:577–590

    Article  Google Scholar 

  60. Bobrov A A, Yazvenko S B, Warner B G (1995) Taxonomic and ecological implications of shell morphology of three testaceans (Protozoa: Rhizopoda) in Russia and Canada. Archiv für Protistenkunde 145:119–126

    Google Scholar 

  61. Roucoux K H, Lawson I T, Jones T D, Baker T R, Coronado E N H, Gosling W D, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255

    Article  Google Scholar 

  62. Wilmshurst J M, Wiser S K, Charman D J (2003) Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. The Holocene 13:61–72

    Article  Google Scholar 

  63. Swindles GT, Roe HM (2007) Examining the dissolution characteristics of testate amoebae (Protozoa: Rhizopoda) in low pH conditions: implications for peatland palaeoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 252:486–496

    Article  Google Scholar 

  64. Mitchell E, Payne R, Lamentowicz M (2008) Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands. J Paleolimnol 40:603–618

    Article  Google Scholar 

  65. Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH (2010) A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth Syst Dyn 1:1–21

    Article  Google Scholar 

  66. Morris PJ, Belyea LR, Baird AJ (2011) Ecohydrological feedbacks in peatland development: a theoretical modelling study. J Ecol 99:1190–1201

    Article  Google Scholar 

  67. Kurnianto S (2013) Modeling carbon accumulation dynamics in tropical peat swamp forests (abstract), New frontiers in tropical biology: the next 50 years (A Joint Meeting of ATBC and OTS)

  68. Swindles G T, Morris P J, Baird A J, Blaauw M, Plunkett G (2012) Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys Res Lett 39:L11401

    Article  Google Scholar 

  69. Bush MB, Colinvaux PA (1988) A 7,000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76:141–154

    Google Scholar 

  70. Frost I (1988) A Holocene sedimentary record from Anañgucocha in the Ecuadorian Amazon. Ecology 69:66–73

    Article  Google Scholar 

  71. Liu KB, Colinvaux PA (1988) A 5,200-year history of Amazon rain forest. J Biogeogr 15:231–248

    Article  Google Scholar 

  72. Behling H, Berrio J, Hooghiemstra H (1999) Late Quaternary pollen records from the middle Caquetá river basin in central Columbian Amazon. Palaeogeogr Palaeoclimatol Palaeoecol 145:193–213

    Article  Google Scholar 

  73. Correa-Metrio A, Cabrera KR, Bush MB (2010) Quantifying ecological change through discriminant analysis: a palaeoecological example from the Peruvian Amazon. J Veg Sci 21:695–704

    Google Scholar 

  74. Hoorn C, Wesselingh F P, ter Steege H, Bermudez M A, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson C L, Figueiredo J P, Jaramillo C, Riff D, Negri F R, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a Royal Society research grant to GTS (grant no. 481831). Radiocarbon dates were provided by the UK NERC Radiocarbon Laboratory allocation number 1681.1012 to DJC and AGS. We thank Outi L¨ahteenoja for advice on accessing the Aucayacu peatland and Ricardo Farroñay Peramas and Denis del Castillo Torres of the Instituto de Investigaciones de la Amazon´ıa Peruana in Iquitos for assisting with fieldwork planning. Aristidis Vasques is acknowledged for piloting the boats and helping us run the field campaign. Many thanks to the villagers of Bellavista and Malvinas for assistance in the field (especially Lucho Freyre and David Huayaban). Scanning electron micrographs (SEM) were taken in The Scanning Microscopy and Microanalysis Laboratory, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University. We kindly thank Monika Lutynska for technical support. Monika Reczuga would also like to thank Katarzyna Marcisz for assisting with the identification of testate amoebae.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme T. Swindles.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swindles, G.T., Reczuga, M., Lamentowicz, M. et al. Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction. Microb Ecol 68, 284–298 (2014). https://doi.org/10.1007/s00248-014-0378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0378-5

Keywords

Navigation