Skip to main content
Log in

Composition of Archaea in Seawater, Sediment, and Sponges in the Kepulauan Seribu Reef System, Indonesia

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Coral reefs are among the most diverse and productive ecosystems in the world. Most research has, however, focused on eukaryotes such as corals and fishes. Recently, there has been increasing interest in the composition of prokaryotes, particularly those inhabiting corals and sponges, but these have mainly focused on bacteria. There have been very few studies of coral reef Archaea, despite the fact that Archaea have been shown to play crucial roles in nutrient dynamics, including nitrification and methanogenesis, of oligotrophic environments such as coral reefs. Here, we present the first study to assess Archaea in four different coral reef biotopes (seawater, sediment, and two sponge species, Stylissa massa and Xestospongia testudinaria). The archaeal community of both sponge species and sediment was dominated by Crenarchaeota, while the seawater community was dominated by Euryarchaeota. The biotope explained more than 72 % of the variation in archaeal composition. The number of operational taxonomic units (OTUs) was highest in sediment and seawater biotopes and substantially lower in both sponge hosts. No “sponge-specific” archaeal OTUs were found, i.e., OTUs found in both sponge species but absent from nonhost biotopes. Despite both sponge species hosting phylogenetically distinct microbial assemblages, there were only minor differences in Kyoto Encyclopedia of Genes and Genomes (KEGG) functional pathways. In contrast, most functional pathways differed significantly between microbiomes from sponges and nonhost biotopes including all energy metabolic pathways. With the exception of the methane and nitrogen metabolic pathway, all energy metabolic pathways were enriched in sponges when compared to nonhost biotopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Angel R, Claus P, Conrad R (2012) Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J 6:847–862. doi:10.1038/ismej.2011.141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Baker BJ, Lesniewski RA, Dick GJ (2012) Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME J 6:2269–2279. doi:10.1038/ismej.2012.64

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Barns SM, Delwiche CF, Palmer JD, Pace NR (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. P Natl Acad Sci USA 93:9188–9193. doi:10.1073/pnas.93.17.9188

    Article  CAS  Google Scholar 

  4. Bartlett T (2013) Small Scale Experimental Systems for Coral Research: Considerations, Planning, and Recommendations. NOAA Technical Memorandum NOS NCCOS 165 and CRCP 18, Charleston, p 68

    Google Scholar 

  5. Bell J (2008) The functional roles of marine sponges. Estuar Coast Shelf S 79:341–353. doi:10.1016/j.ecss.2008.05.002

    Article  Google Scholar 

  6. Bowen JL, Morrison HG, Hobbie JE, Sogin ML (2012) Salt marsh sediment diversity: a test of the variability of the rare biosphere among environmental replicates. ISME J 6:2014–2023. doi:10.1038/ismej.2012.47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Brochier-Armanet C, Gribaldo S, Zivanovic Y, Confalonieri F, Forterre P (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol 6:R42. doi:10.1186/gb-2005-6-5-r42

    Article  Google Scholar 

  8. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252. doi:10.1038/nrmicro1852

    Article  CAS  PubMed  Google Scholar 

  9. Brochier-Armanet C, Gribaldo S, Forterre P (2011) Spotlight on the Thaumarchaeota. ISME J 6:227–230. doi:10.1038/ismej.2011.145

    Article  PubMed Central  PubMed  Google Scholar 

  10. Bromke MA (2013) Amino acid biosynthesis pathways in diatoms. Metabolites 3:294–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Cao H, Li M, Hong Y, Gu J (2011) Diversity and abundance of ammonia-oxidizing Archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 34:513–523. doi:10.1016/j.syapm.2010.11.023

    Article  CAS  PubMed  Google Scholar 

  12. Capone D, Dunham S, Horrigan S, Duguay L (1992) Microbial nitrogen transformations in unconsolidated coral reef sediments. Mar Ecol-Prog Ser 80:75–88. doi:10.3354/meps080075

    Article  CAS  Google Scholar 

  13. Cleary DFR, Becking LE, Voogd NJ, Pires AC, Polonia AR, Egas C, Gomes NCM (2013) Habitat and host-related variation in sponge bacterial symbionts communities in Indonesian waters. FEMS Microbiol Ecol. doi:10.1111/1574-6941.12135

    PubMed  Google Scholar 

  14. Cleary DFR, De Vantier L, Vail L, Manto P, de Voogd NJ, Rachello-Dolmen PG, Tuti Y, Budiyanto A, Wolstenholme J, Hoeksema BW et al (2008) Relating variation in species composition to environmental variables: a multi-taxon study in an Indonesian coral reef complex. Aquat Sci 70:419–431. doi:10.1007/s00027-008-8077-2

    Article  CAS  Google Scholar 

  15. Cleary DFR, Suharsono, Hoeksema B (2006) Coral diversity across a disturbance gradient in the Pulau Seribu reef complex off Jakarta, Indonesia. Biodivers Conserv 15:3653–3674. doi:10.1007/s10531-004-4692-y

    Article  Google Scholar 

  16. Copp BR, Pearce AN (2007) Natural product growth inhibitors of Mycobacterium tuberculosis. Nat Prod Rep 24:278–297. doi:10.1039/b513520f

    Article  CAS  PubMed  Google Scholar 

  17. Costa R, Keller-Costa T, Gomes NC, da Rocha UN, van Overbeek L, van Elsas JD (2013) Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microb Ecol 65:232–244. doi:10.1007/s00248-012-0102-2

    Article  PubMed  Google Scholar 

  18. Dang H, Zhang X, Sun J, Li T, Zhang Z, Yang G (2008) Diversity and spatial distribution of sediment ammonia-oxidizing Crenarchaeota in response to estuarine and environmental gradients in the Changjiang Estuary and East China Sea. Microbiology 154:2084–2095. doi:10.1099/mic.0.2007/013581-0

    Article  CAS  PubMed  Google Scholar 

  19. de Voogd N, Becking L, Cleary D (2009) Sponge community composition in the Derawan Islands, ne Kalimantan, Indonesia. Mar Ecol Prog Ser 396:169–180. doi:10.3354/meps08349

    Article  Google Scholar 

  20. DeLong E (1992) Archaea in coastal marine environments. P Natl Acad Sci USA 89:5685–5689. doi:10.1073/pnas.89.12.5685

    Article  CAS  Google Scholar 

  21. DeLong E, Pace N (2001) Environmental diversity of bacteria and Archaea. Syst Biol 50:470–478. doi:10.1080/106351501750435040

    Article  CAS  PubMed  Google Scholar 

  22. DeLong E, Wu K, Prézelin B, Jovine R et al (1994) High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695–697. doi:10.1038/371695a0

    Article  CAS  PubMed  Google Scholar 

  23. Demain AL (1998) Induction of microbial secondary metabolism. Int Microbiol 259–264

  24. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996. doi:10.1038/NMETH.2604

    Article  CAS  PubMed  Google Scholar 

  25. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, Hedlund BP, Brochier-Armanet C, Kunin V, Anderson I et al (2008) A Korarchaeal genome reveals insights into the evolution of the Archaea. P Natl Acad Sci USA 105:8102–8107. doi:10.1073/pnas.0801980105

    Article  CAS  Google Scholar 

  26. Erwin PM, Thacker RW (2008) Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts. Mol Ecol 17:2937–2947. doi:10.1111/j.1365-294X.2008.03808.x

    Article  CAS  PubMed  Google Scholar 

  27. Erwin P, Olson J, Thacker R (2011) Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern gulf of Mexico. PloS one 6:e26806. doi:10.1371/journal.pone.0026806

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, Thomas T (2012) Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. P Natl Acad Sci USA 109:E1878–E1887. doi:10.1073/pnas.1203287109

    Article  CAS  Google Scholar 

  29. Filipsson AF, Bard J, Karlsson S (1998) Concise International Chemical Assessment Document 5: Limonene, vol 5. World Health Organization, Geneva, pp 1–36

    Google Scholar 

  30. Flemer B, Kennedy J, Margassery LM, Morrissey JP, O’Gara F, Dobson ADW (2012) Diversity and antimicrobial activities of microbes from two Irish marine sponges, Suberites carnosus and Leucosolenia sp. J Appl Microbiol 112:289–301. doi:10.1111/j.1365-2672.2011.05211.x

    Article  CAS  PubMed  Google Scholar 

  31. Francis C, Roberts K, Beman J, Santoro A, Oakley B (2005) Ubiquity and diversity of ammonia oxidizing Archaea in water columns and sediments of the ocean. P Natl Acad Sci USA 102:14683–14688. doi:10.1073/pnas.0506625102

    Article  CAS  Google Scholar 

  32. Freeman CJ, Thacker RW (2011) Complex interactions between marine sponges and their symbiotic microbial communities. Limnol Oceanogr 56:1577–1586. doi:10.4319/lo.2011.56.5.1577

    Article  Google Scholar 

  33. Grossart HP, Frindte K, Dziallas C, Eckert W, Tang KW (2011) Microbial methane production in oxygenated water column of an oligotrophic lake. P Natl Acad Sci USA 108:19657–19661. doi:10.1073/pnas.1110716108

    Article  CAS  Google Scholar 

  34. Hentschel U, Hopke J, Horn M, Friedrich A, Wagner M, Hacker J, Moore B (2002) Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microb 68:4431–4440. doi:10.1128/AEM.68.9.4431-4440.2002

    Article  CAS  Google Scholar 

  35. Hentschel U, Usher K, Taylor M (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177. doi:10.1111/j.1574-6941.2005.00046.x

    Article  CAS  PubMed  Google Scholar 

  36. Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome. Nat Rev Microbiol 10:641–654. doi:10.1038/nrmicro2839

    Article  CAS  PubMed  Google Scholar 

  37. Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schlaeppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–2243. doi:10.1111/j.1462-2920.2009.01944.x

    Article  CAS  PubMed  Google Scholar 

  38. Hohmann-Marriott MF & Blankenship RE (2011) Evolution of Photosynthesis In Merchant, SS and Briggs, WR and Ort, D, editor, Annu Rev Plant Biol 62: 515–548. doi: 10.1146/annurev-arplant-042110-103811

  39. Holmes B, Blanch H (2007) Genus-specific associations of marine sponges with Group I Crenarchaeotes. Mar Biol 150:759–772. doi:10.1007/s00227-006-0361-x

    Article  Google Scholar 

  40. Huber H, Hohn MJ, Rachel R, Fuchs T, Wimmer VC, Stetter KO (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417:63–67. doi:10.1038/417063a

    Article  CAS  PubMed  Google Scholar 

  41. Jackson SA, Kennedy J, Morrissey JP, OGara F, Dobson AD (2012) Pyrosequencing reveals diverse and distinct sponge-specific microbial communities in sponges from a single geographical location in Irish waters. Microb Ecol 64:105–116. doi:10.1007/s00248-011-0002-x

    Article  PubMed  Google Scholar 

  42. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. doi:10.1093/nar/28.1.27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kendall M, Wardlaw G, Tang C, Bonin A, Liu Y, Valentine D (2007) Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl Environ Microb 73:407–414. doi:10.1128/AEM.01154-06

    Article  CAS  Google Scholar 

  44. Kiene RP (1991) In Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, Halomethanes. American Society for Microbiology, Washington DC, pp 111–146

    Google Scholar 

  45. Kozubal MA, Romine M, deM Jennings R, Jay ZJ, Tringe SG, Rusch DB, Beam JP, McCue LA, Inskeep WP (2012) Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park. ISME J 7:622201. doi:10.1038/ismej.2012.132

    Google Scholar 

  46. Lakshmi V, Saxena A, Mishra SK, Mishra M, Srivastava S, Ghoshal S (2009) Antiamebic activity of marine sponge Haliclona exigua (Krikpatrick). Bangladesh J Pharmacol 4:55–59. doi:10.3329/bjp.v4i1.1083

    Google Scholar 

  47. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814. doi:10.1038/nbt.2676

    Article  CAS  PubMed  Google Scholar 

  48. Lee O, Wang Y, Yang J, Lafi F, Al-Suwailem A, Qian P (2011) Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J 5:650–664. doi:10.1038/ismej.2010.165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lee Y, Lee J, Lee H (2001) Microbial symbiosis in marine sponges. J Microbiol 39:254–264

    Google Scholar 

  50. Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280. doi:10.1007/s004420100716

    Article  Google Scholar 

  51. Li D, Xu Y, Shao C, Yang R, Zheng C, Chen Y, Fu X, Qian P, She Z, Voogd N et al (2012) Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar Drugs 10:234–241. doi:10.3390/md10010234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Marty D, Nival P, Yoon W (1997) Methanoarchaea associated with sinking particles and zooplankton collected in the Northeastern tropical Atlantic. Oceanol Acta 20:863–869

    CAS  Google Scholar 

  53. Massana R, DeLong E, PA C (2000) A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microb 66:1777–1787. doi:10.1128/AEM.66.5.1777-1787.2000

    Article  CAS  Google Scholar 

  54. Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, Circello BT, Evans BS, Martens-Habbena W, Stahl DA, van der Donk WA (2012) Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science 337:1104–1107. doi:10.1126/science.1219875

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Murdock JN, Shields JFD, Lizotte JRE (2013) Periphyton responses to nutrient and atrazine mixtures introduced through agricultural runoff. Ecotoxicology 22:215–230. doi:10.1007/s10646-012-1018-9

    Article  CAS  PubMed  Google Scholar 

  56. Nakisah MA, Muryany MYI, Fatimah H, Fadilah RN, Zalilawati MR, Khamsah S, Habsah M (2012) Anti-amoebic properties of a Malaysian marine sponge Aaptos sp on Acanthamoeba castellanii. World J Microb Biot 28:1237–1244. doi:10.1007/s11274-011-0927-8

    Article  CAS  Google Scholar 

  57. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H et al (2011) Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res 39:3204–3223. doi:10.1093/nar/gkq1228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457. doi: 10.1146/annurev-micro-092412-155614

    Google Scholar 

  59. Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson G, Solymos P, Stevens M, Wagner H (2009) vegan: Community ecology package. R package version 1.15–2. URL: http://CRAN.R-project.org/package=vegan

  60. Pires A, Cleary D, Almeida A, Cunha Â, Dealtry S, Mendonça-Hagler L, Smalla K, Gomes N (2012) Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples. Appl Environ Microb 78:5520–5528. doi:10.1128/AEM.00386-12

    Article  CAS  Google Scholar 

  61. Pitcher A, Villanueva L, Hopmans E, Schouten S, Reichart G, Damsté J (2011) Niche segregation of ammonia-oxidizing Archaea and anammox Bacteria in the Arabian Sea oxygen minimum zone. ISME J 5:1896–1904. doi:10.1038/ismej.2011.60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Preston C, Wu K, Molinski T, DeLong E (1996) A psychrophilic Crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. P Natl Acad Sci USA 93:6241–6246. doi:10.1073/pnas.93.13.6241

    Article  CAS  Google Scholar 

  63. Previsic A, Walton C, Kucinic M, Mitrikeski PT, Kerovec M (2009) Pleistocene divergence of Dinaric Drusus endemics (Trichoptera, Limnephilidae) in multiple microrefugia within the Balkan Peninsula. Mol Ecol 18:634–647. doi:10.1111/j.1365-294X.2008.04046.x

    Article  CAS  PubMed  Google Scholar 

  64. Prosser JI, Nicol GW (2008) Relative contributions of Archaea and bacteria to aerobic ammonia oxidation in the environment. Environ Microbiol 10:2931–2941. doi:10.1111/j.1462-2920.2008.01775.x

    Article  CAS  PubMed  Google Scholar 

  65. Qian P, Wang Y, Lee O, Lau S, Yang J, Lafi F, Al-Suwailem A, Wong T (2010) Vertical stratification of microbial communities in the Red Sea revealed by 16s rDNA pyrosequencing. ISME J 5:507–518. doi:10.1038/ismej.2010.112

    Article  PubMed Central  PubMed  Google Scholar 

  66. Quideau S, Lebon M, Lamidey A (2002) Enantiospecific synthesis of the antituberculosis marine sponge metabolite (+)-puupehenone. The arenol oxidative activation route. Org Lett 4:3975–3978. doi:10.1021/ol026855t

    Article  CAS  PubMed  Google Scholar 

  67. Rachello-Dolmen P, Cleary D (2007) Relating coral species traits to environmental conditions in the Jakarta Bay/Pulau Seribu reef system, Indonesia. Estuar Coast Shelf S 73:816–826. doi:10.1016/j.ecss.2007.03.017

    Article  Google Scholar 

  68. Radax R, Rattei T, Lanzen A, Bayer C, Rapp HT, Urich T, Schleper C (2012) Metatranscriptomics of the marine sponge Geodia barretti: tackling phylogeny and function of its microbial community. Environ Microbiol 14:1308–1324. doi:10.1111/j.1462-2920.2012.02714.x

    Article  CAS  PubMed  Google Scholar 

  69. Reeburgh WS (2007) Oceanic methane biogeochemistry. Chem Rev 107:486–513. doi:10.1021/cr050362v

    Article  CAS  PubMed  Google Scholar 

  70. Rohde S, Gochfeld D, Ankisetty S, Avula B, Schupp P, Slattery M (2012) Spatial variability in secondary metabolites of the indo-pacific sponge Stylissa massa. J Chem Ecol 38:463–475. doi: 10.1007/s10886-012-0124-8

    Google Scholar 

  71. Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362. doi:10.1038/nrmicro1635

    Article  CAS  PubMed  Google Scholar 

  72. Rusch A, Hannides A, Gaidos E (2009) Diverse communities of active bacteria and Archaea along oxygen gradients in coral reef sediments. Coral Reefs 28:15–26. doi:10.1007/s00338-008-0427-y

    Article  Google Scholar 

  73. Schmitt S, Angermeier H, Schiller R, Lindquist N, Hentschel U (2008) Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microb 74:7694–7708. doi:10.1128/AEM.00878-08

    Article  CAS  Google Scholar 

  74. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi:10.1186/gb-2011-12-6-r60

    Article  PubMed Central  PubMed  Google Scholar 

  75. Seravalli J, Kumar M, Ragsdale S (2002) Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the autotrophic Wood-Ljungdahl pathway. Biochemistry 41:1807–1819. doi:10.1021/bi011687i

    Article  CAS  PubMed  Google Scholar 

  76. Sharp KH, Eam B, Faulkner DJ, Haygood MG (2007) Vertical transmission of diverse microbes in the tropical sponge Corticium sp. Appl Environ Microb 73:622–629. doi:10.1128/AEM.01493-06

    Article  CAS  Google Scholar 

  77. Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990. doi:10.1111/j.1462-2920.2008.01718.x

    Article  CAS  PubMed  Google Scholar 

  78. Siegl A, Kamke J, Hochmuth T, Piel J, Richter M, Liang C, Dandekar T, Hentschel U (2011) Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges. ISME J 5:61–70. doi:10.1038/ismej.2010.95

    Article  PubMed Central  PubMed  Google Scholar 

  79. Sipkema D, Franssen M, Osinga R, Tramper J, Wijffels R (2005) Marine sponges as pharmacy. Mar Biotechnol 7:142–162. doi:10.1007/s10126-004-0405-5

    Article  CAS  PubMed  Google Scholar 

  80. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. P Natl Acad Sci USA 103:12115–12120. doi:10.1073/pnas.0605127103

    Article  CAS  Google Scholar 

  81. Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl DA, Wagner M, Schleper C (2010) Distinct gene set in two different lineages of ammonia-oxidizing Archaea supports the phylum Thaumarchaeota. Trends Microbiol 18:331–340. doi:10.1016/j.tim.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  82. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) Mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86

    Google Scholar 

  84. Taylor MW, Hill RT, Hentschel U (2011) Meeting Report: 1st International Symposium on Sponge Microbiology. Mar Biotechnol 13:1057–1061. doi:10.1007/s10126-011-9397-0

    Article  CAS  PubMed  Google Scholar 

  85. Taylor MW, Tsai P, Simister RL, Deines P, Botte E, Ericson G, Schmitt S, Webster NS (2013) Sponge-specific bacteria are widespread (but rare) in diverse marine environments. ISME J 7:438–443. doi:10.1038/ismej.2012.111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Taylor M, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol R 71:295–347. doi:10.1128/MMBR.00040-06

    Article  CAS  Google Scholar 

  87. Team RDC (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. version 2.15. URL: http://www.R-project.org/

  88. Turque A, Batista D, Silveira C, Cardoso A, Vieira R, Moraes F, Clementino M, Albano R, Paranhos R, Martins O et al (2010) Environmental shaping of sponge associated archaeal communities. PLoS One 5:e15774. doi:10.1371/journal.pone.0015774

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Urakawa H, Martens-Habbena W, Stahl DA (2010) High abundance of ammonia-oxidizing Archaea in coastal waters, determined using a modified DNA extraction method. Appl Environ Microb 76:2129–2135. doi:10.1128/AEM.02692-09

    Article  CAS  Google Scholar 

  90. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323. doi:10.1038/nrmicro1619

    Article  CAS  PubMed  Google Scholar 

  91. Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–346. doi:10.1111/j.1462-2920.2011.02460.x

    Article  CAS  PubMed  Google Scholar 

  92. Webster N, Negri A, Munro M, Battershill C (2004) Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300. doi:10.1111/j.1462-2920.2004.00570.x

    Article  PubMed  Google Scholar 

  93. Webster N, Taylor M, Behnam F, Lucker S, Rattei T, Whalan S, Horn M, Wagner M (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082. doi:10.1111/j.1462-2920.2009.02065.x

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Wemheuer B, Wemheuer F, Daniel R (2012) RNA-based assessment of diversity and composition of active archaeal communities in the German Bight. Archaea-An Int Microbiol J. doi:10.1155/2012/695826

    Google Scholar 

  95. Wilkinson C (1983) Net primary productivity in coral-reef sponges. Science 219:410–412. doi:10.1126/science.219.4583.410

    Article  CAS  PubMed  Google Scholar 

  96. Wuchter C, Abbas B, Coolen M, Herfort L, Van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl G, Middelburg J et al (2006) Archaeal nitrification in the ocean. P Natl Acad Sci USA 103:12317–12322. doi:10.1073/pnas.0600756103

    Article  CAS  Google Scholar 

  97. Wulff J (2001) Assessing and monitoring coral reef sponges: why and how? B Mar Sci 69:831–846

    Google Scholar 

  98. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214. doi:10.1089/10665270050081478

    Article  CAS  PubMed  Google Scholar 

  99. Zhou X, Xu T, Yang X, Huang R, Yang B, Tang L, Liu Y (2010) Chemical and biological aspects of marine sponges of the genus Xestospongia. Chem Biodivers 7:2201–2227. doi:10.1002/cbdv.201000024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Portuguese Foundation for Science and Technology (FCT) under grant PTDC/AAC-AMB/115304/2009 (LESS CORAL) and a PhD Fellowship SFRH/BD/33391/2008. Samples were collected under a Scientific Research Permit issued by the Indonesian State Ministry for Research and Technology (Kementerian Riset Dan Teknologi Republik Indonesia – RISTEK #268/SIP/FRP/SM/VII/2011). We thank the Indonesian Institute of Sciences (PPO – LIPI) for their support and especially Dr Yos Tuti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana R. M. Polónia.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 150 kb)

ESM 2

(PDF 777 kb)

ESM 3

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polónia, A.R.M., Cleary, D.F.R., Duarte, L.N. et al. Composition of Archaea in Seawater, Sediment, and Sponges in the Kepulauan Seribu Reef System, Indonesia. Microb Ecol 67, 553–567 (2014). https://doi.org/10.1007/s00248-013-0365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0365-2

Keywords

Navigation