Skip to main content

Advertisement

Log in

Worldwide Populations of the Aphid Aphis craccivora Are Infected with Diverse Facultative Bacterial Symbionts

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Facultative bacterial endosymbionts can play an important role in the evolutionary trajectory of their hosts. Aphids (Hemiptera: Aphididae) are infected with a wide variety of facultative endosymbionts that can confer ecologically relevant traits, which in turn may drive microevolutionary processes in a dynamic selective environment. However, relatively little is known about how symbiont diversity is structured in most aphid species. Here, we investigate facultative symbiont species richness and prevalence among worldwide populations of the cowpea aphid, Aphis craccivora Koch. We surveyed 44 populations of A. craccivora, and detected 11 strains of facultative symbiotic bacteria, representing six genera. There were two significant associations between facultative symbiont and aphid food plant: the symbiont Arsenophonus was found at high prevalence in A. craccivora populations collected from Robinia sp. (locust), whereas the symbiont Hamiltonella was almost exclusively found in A. craccivora populations from Medicago sativa (alfalfa). Aphids collected from these two food plants also had divergent mitochondrial haplotypes, potentially indicating the formation of specialized aphid lineages associated with food plant (host-associated differentiation). The role of facultative symbionts in this process remains to be determined. Overall, observed facultative symbiont prevalence in A. craccivora was lower than that of some other well-studied aphids (e.g., Aphis fabae and Acyrthosiphon pisum), possibly as a consequence of A. craccivora's almost purely parthenogenetic life history. Finally, most (70 %) of the surveyed populations were polymorphic for facultative symbiont infection, indicating that even when symbiont prevalence is relatively low, symbiont-associated phenotypic variation may allow population-level evolutionary responses to local selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos 64:409–434

    Article  CAS  Google Scholar 

  2. Baumann P (2005) Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu Rev Microbiol 59:155–189. doi:10.1146/annurev.micro.59.030804.121041

    Article  CAS  PubMed  Google Scholar 

  3. Burke GR, Normark BB, Favret C, Moran NA (2009) Evolution and diversity of facultative symbionts from the aphid subfamily Lachninae. Appl Environ Microbiol 75:5328–5335. doi:10.1128/aem.00717-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? — a statistical analysis of current data. Fems Microbiol Lett 281:215–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Russell JA, Latorre A, Sabater-Munoz B, Moya A, Moran NA (2003) Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Mol Ecol 12:1061–1075

    Article  CAS  PubMed  Google Scholar 

  6. Zug R, Hammerstein P (2012) Still a host of hosts for Wolbachia: analysis of recent data suggests that 40 % of terrestrial arthropod species are infected. PLOS ONE 7:e38544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  CAS  PubMed  Google Scholar 

  8. Jaenike J, Unckless R, Cockburn SN, Boelio LM, Perlman SJ (2010) Adaptation via symbiosis: recent spread of a Drosophila defensive symbiont. Science 329:212–215. doi:10.1126/science.1188235

    Article  CAS  PubMed  Google Scholar 

  9. Kaiser W, Huguet E, Casas J, Commin C, Giron D (2010) Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B Biol Sci 277:2311–2319. doi:10.1098/rspb.2010.0214

    Article  CAS  Google Scholar 

  10. Jaenike J, Dyer KA, Cornish C, Minhas MS (2006) Asymmetrical reinforcement and Wolbachia infection in Drosophila. PLOS Biol 4:1852–1862

    Article  CAS  Google Scholar 

  11. Adachi-Hagimori T, Miura K, Abe Y (2011) Gene flow between sexual and asexual strains of parasitic wasps: a possible case of sympatric speciation caused by a parthenogenesis-inducing bacterium. J Evol Biol 24:1254–1262. doi:10.1111/j.1420-9101.2011.02257.x

    Article  PubMed  Google Scholar 

  12. Russell JA, Moran NA (2006) Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc R Soc B Biol Sci 273:603–610. doi:10.1098/rspb.2005.3348

    Article  Google Scholar 

  13. Harmon JP, Moran NA, Ives AR (2009) Species response to environmental change: impacts of food web interactions and evolution. Science 323:1347–1350

    Article  CAS  PubMed  Google Scholar 

  14. Bian GW, Xu Y, Lu P, Xie Y, Xi ZY (2010) The endosymbiotic bacterium Wolbachia induces resistance to Dengue virus in Aedes aegypti. PLOS Pathog 6:e1000833. doi:10.1371/journal.ppat.1000833

    Article  PubMed Central  PubMed  Google Scholar 

  15. Iturbe-Ormaetxe I, Walker T, Neill SLO (2011) Wolbachia and the biological control of mosquito-borne disease. Embo Rep 12:508–518. doi:10.1038/embor.2011.84

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Tsuchida T, Koga R, Fukatsu T (2004) Host plant specialization governed by facultative symbiont. Science 303:1989–1989

    Article  CAS  PubMed  Google Scholar 

  17. Himler AG, Adachi-Hagimori T, Bergen JE, Kozuch A, Kelly SE, Tabashnik BE, Chiel E, Duckworth VE, Dennehy TJ, Zchori-Fein E, Hunter MS (2011) Rapid spread of a bacterial symbiont in an invasive whitefly is driven by fitness benefits and female bias. Science 332:254–256. doi:10.1126/science.1199410

    Article  CAS  PubMed  Google Scholar 

  18. White JA (2011) Caught in the act: rapid, symbiont-driven evolution. Bioessays 33:823–829

    Article  CAS  PubMed  Google Scholar 

  19. Turelli M, Hoffmann AA (1991) Rapid spread of an inherited incompatibility factor in California Drosophila. Nature 353:440–442

    Article  CAS  PubMed  Google Scholar 

  20. Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. doi:10.1038/nrmicro1969

    Article  CAS  PubMed  Google Scholar 

  21. Miller WJ, Ehrman L, Schneider D (2010) Infectious speciation revisited: impact of symbiont-depletion on female fitness and mating behavior of Drosophila paulistorum. PLOS Pathog 6:e1001214. doi:10.1371/journal.ppat.1001214

    Article  PubMed Central  PubMed  Google Scholar 

  22. Oliver KM, Smith AH, Russell JA (2013) Defensive symbiosis in the real world – advancing ecological studies of heritable, protective bacteria in aphids and beyond. Funct Ecol. doi:10.1111/1365-2435.12133

    Google Scholar 

  23. Ferrari J, West JA, Via S, Godfray HCJ (2012) Population genetic structure and secondary symbionts in host-associated populations of the pea aphid complex. Evolution 66:375–390. doi:10.1111/j.1558-5646.2011.01436.x

    Article  PubMed  Google Scholar 

  24. Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, Doll S, Anastopoulos I, Novin M, Oliver KM (2013) Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 22:2045–2059. doi:10.1111/mec.12211

    Article  PubMed  Google Scholar 

  25. Frantz A, Calcagno V, Mieuzet L, Plantegenest M, Simon JC (2009) Complex trait differentiation between host-populations of the pea aphid Acyrthosiphon pisum (Harris): implications for the evolution of ecological specialisation. Biol J Linn Soc 97:718–727

    Article  Google Scholar 

  26. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807. doi:10.1073/pnas.0335320100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Montllor CB, Maxmen A, Purcell AH (2002) Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol Entomol 27:189–195

    Article  Google Scholar 

  28. Scarborough CL, Ferrari J, Godfray HCJ (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781–1781. doi:10.1126/science.1120180

    Article  CAS  PubMed  Google Scholar 

  29. Lukasik P, van Asch M, Guo HF, Ferrari J, Godfray HCJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218. doi:10.1111/ele.12031

    Article  PubMed  Google Scholar 

  30. Parker BJ, Spragg CJ, Altincicek B, Gerardo NM (2013) Symbiont-mediated protection against fungal pathogens in pea aphids: a role for pathogen specificity? Appl Environ Microbiol 79:2455–2458. doi:10.1128/aem.03193-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Simon JC, Boutin S, Tsuchida T, Koga R, Le Gallic JF, Frantz A, Outreman Y, Fukatsu T (2011) Facultative symbiont infections affect aphid reproduction. PLOS One 6:e21831. doi:10.1371/journal.pone.0021831

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Tsuchida T, Koga R, Horikawa M, Tsunoda T, Maoka T, Matsumoto S, Simon JC, Fukatsu T (2010) Symbiotic bacterium modifies aphid body color. Science 330:1102–1104. doi:10.1126/science.1195463

    Article  CAS  PubMed  Google Scholar 

  33. Tsuchida T, Koga R, Shibao H, Matsumoto T, Fukatsu T (2002) Diversity and geographic distribution of secondary endosymbiotic bacteria in natural populations of the pea aphid, Acyrthosiphon pisum. Mol Ecol 11:2123–2135

    Article  CAS  PubMed  Google Scholar 

  34. Leonardo TE, Muiru GT (2003) Facultative symbionts are associated with host plant specialization in pea aphid populations. Proc R Soc Lond B Biol 270:S209–S212

    Article  Google Scholar 

  35. McLean AHC, van Asch M, Ferrari J, Godfray HCJ (2011) Effects of bacterial secondary symbionts on host plant use in pea aphids. Proc R Soc B Biol Sci 278:760–766. doi:10.1098/rspb.2010.1654

    Article  CAS  Google Scholar 

  36. Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A 102:12795–12800. doi:10.1073/pnas.0506131102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Jaenike J, Polak M, Fiskin A, Helou M, Minhas M (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Gehrer L, Vorburger C (2012) Parasitoids as vectors of facultative bacterial endosymbionts in aphids. Biol Lett 8:613–615. doi:10.1098/rsbl.2012.0144

    Article  PubMed Central  PubMed  Google Scholar 

  39. Caspi-Fluger A, Inbar M, Mozes-Daube N, Katzir N, Portnoy V, Belausov E, Hunter MS, Zchori-Fein E (2012) Horizontal transmission of the insect symbiont Rickettsia is plant-mediated. Proc R Soc B Biol Sci 279:1791–1796. doi:10.1098/rspb.2011.2095

    Article  CAS  Google Scholar 

  40. Wang Z, Shen ZR, Song Y, Liu HY, Li ZX (2009) Distribution and diversity of Wolbachia in different populations of the wheat aphid Sitobion miscanthi (Hemiptera: Aphididae) in China. Eur J Entomol 106:49–55

    Article  CAS  Google Scholar 

  41. Li T, Xiao JH, Xu ZH, Murphy RW, Huang DW (2011) A possibly new Rickettsia-like genus symbiont is found in Chinese wheat pest aphid, Sitobion miscanthi (Hemiptera: Aphididae). J Invertebr Pathol 106:418–421. doi:10.1016/j.jip.2010.12.003

    Article  PubMed  Google Scholar 

  42. Li T, Xiao JH, Xu ZH, Murphy RW, Huang DW (2011) Cellular tropism, population dynamics, host range and taxonomic status of an aphid secondary symbiont, SMLS (Sitobion miscanthi L Type Symbiont). PLOS ONE 6:e21944. doi:10.1371/journal.pone.0021944

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Carletto J, Gueguen G, Fleury F, Vanlerberghe-Masutti F (2008) Screening the bacterial endosymbiotic community of sap-feeding insects by terminal-restriction fragment length polymorphism analysis. Entomol Exp Appl 129:228–234. doi:10.1111/j.1570-7458.2008.00760.x

    Article  CAS  Google Scholar 

  44. Chandler SM, Wilkinson TL, Douglas AE (2008) Impact of plant nutrients on the relationship between a herbivorous insect and its symbiotic bacteria. Proc R Soc B Biol Sci 275:565–570. doi:10.1098/rspb.2007.1478

    Article  CAS  Google Scholar 

  45. Jones RT, Bressan A, Greenwell AM, Fierer N (2011) Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian islands. Appl Environ Microb 77:8345–8349. doi:10.1128/aem.05974-11

    Article  CAS  Google Scholar 

  46. Najar-Rodriguez AL, McGraw EA, Mensah RK, Pittman GW, Walter GH (2009) The microbial flora of Aphis gossypii: patterns across host plants and geographical space. J Invertebr Pathol 100:123–126. doi:10.1016/j.jip.2008.10.005

    Article  PubMed  Google Scholar 

  47. Vorburger C, Sandrock C, Gouskov A, Castaneda LE, Ferrari J (2009) Genotypic variation and the role of defensive endosymbionts in an all-parthenogenetic host–parasitoid interaction. Evolution 63:1439–1450. doi:10.1111/j.1558-5646.2009.00660.x

    Article  PubMed  Google Scholar 

  48. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391. doi:10.1046/j.1461-0248.2001.00230.x

    Article  Google Scholar 

  49. Haynes S, Darby AC, Daniell TJ, Webster G, van Veen FJF, Godfray HCJ, Prosser JI, Douglas AE (2003) Diversity of bacteria associated with natural aphid populations. Appl Environ Microbiol 69:7216–7223. doi:10.1128/aem.69.12.7216-7223.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Łukasik P, Dawid M, Ferrari J, Godfray HC (2013) The diversity and fitness effects of infection with facultative endosymbionts in the grain aphid, Sitobion avenae. Oecologia: 1–12. doi:10.1007/s00442-013-2660-5

  51. Tsuchida T, Koga R, Sakurai M, Fukatsu T (2006) Facultative bacterial endosymbionts of three aphid species, Aphis craccivora, Megoura crassicauda and Acyrthosiphon pisum, sympatrically found on the same host plants. Appl Entomol Zool 41:129–137. doi:10.1303/aez.2006.129

    Article  Google Scholar 

  52. Blackman RL, Eastop VF (2007) Taxonomic Issues. In: Van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, Wallingford, pp 1–29

    Chapter  Google Scholar 

  53. Brady CM, White JA (2013) Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 38:433–437. doi:10.1111/een.12020

    Article  Google Scholar 

  54. Desneux N, Barta RJ, Hoelmer KA, Hopper KR, Heimpel GE (2009) Multifaceted determinants of host specificity in an aphid parasitoid. Oecologia 160:387–398. doi:10.1007/s00442-009-1289-x

    Article  PubMed  Google Scholar 

  55. Jousselin E, Cœur d'Acier A, Vanlerberghe-Masutti F, Duron O (2013) Evolution and diversity of Arsenophonus endosymbionts in aphids. Mol Ecol 22:260–270. doi:10.1111/mec.12092

    Article  PubMed  Google Scholar 

  56. Tsuchida T, Koga R, Meng XY, Matsumoto T, Fukatsu T (2005) Characterization of a facultative endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum. Microb Ecol 49:126–133. doi:10.1007/s00248-004-0216-2

    Article  CAS  PubMed  Google Scholar 

  57. Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts of aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266. doi:10.1146/annurev-ento-112408-085305

    Article  CAS  PubMed  Google Scholar 

  58. Jones DB, Giles KL, Chen Y, Shufran KA (2005) Estimation of hymenopteran parasitism in cereal aphids by using molecular markers. J Econ Entomol 98:217–221

    Article  PubMed  Google Scholar 

  59. Duron O, Wilkes TE, Hurst GDD (2010) Interspecific transmission of a male-killing bacterium on an ecological timescale. Ecol Lett 13:1139–1148. doi:10.1111/j.1461-0248.2010.01502.x

    Article  PubMed  Google Scholar 

  60. Tuomisto H (2010) A consistent terminology for quantifying species diversity? Yes, it does exist. Oecologia 164:853–860. doi:10.1007/s00442-010-1812-0

    Article  PubMed  Google Scholar 

  61. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  62. Guay JF, Boudreault S, Michaud D, Cloutier C (2009) Impact of environmental stress on aphid clonal resistance to parasitoids: role of Hamiltonella defensa bacterial symbiosis in association with a new facultative symbiont of the pea aphid. J Insect Physiol 55:919–926. doi:10.1016/j.jinsphys.2009.06.006

    Article  CAS  PubMed  Google Scholar 

  63. Bing XL, Yang J, Zchori-Fein E, Wang XW, Liu SS (2013) Characterization of a newly discovered symbiont of the whitefly Bemisia tabaci (Hemiptera: Aleyrodidae). Appl Environ Microbiol 79:569–575. doi:10.1128/aem.03030-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Gueguen G, Vavre F, Gnankine O, Peterschmitt M, Charif D, Chiel E, Gottlieb Y, Ghanim M, Zchori-Fein E, Fleury F (2010) Endosymbiont metacommunities, mtDNA diversity and the evolution of the Bemisia tabaci (Hemiptera: Aleyrodidae) species complex. Mol Ecol 19:4365–4378. doi:10.1111/j.1365-294X.2010.04775.x

    Article  PubMed  Google Scholar 

  65. Toju H, Fukatsu T (2011) Diversity and infection prevalence of endosymbionts in natural populations of the chestnut weevil: relevance of local climate and host plants. Mol Ecol 20:853–868. doi:10.1111/j.1365-294X.2010.04980.x

    Article  PubMed  Google Scholar 

  66. Moran NA, Dunbar HE (2006) Sexual acquisition of beneficial symbionts in aphids. Proc Natl Acad Sci U S A 103:12803–12806. doi:10.1073/pnas.0605772103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Hamid S, Shah MA, Anwar AM (1977) Some ecological and behavioural studies on Aphis craccivora Koch (Hem.: Aphididae). Tech Bull Commonw Inst Biol Control [Pakistan] 18:99–111

    Google Scholar 

  68. Radke SG, Yendol WG, Benton AW (1964) Studies on parthenogenetic viviparous and sexual forms of the cowpea aphid, Aphis craccivora Koch (Aphididae: Homoptera). Indian J Entomol 34:319–324

    Google Scholar 

  69. Bilodeau E, Simon JC, Guay JF, Turgeon J, Cloutier C (2013) Does variation in host plant association and symbiont infection of pea aphid populations induce genetic and behaviour differentiation of its main parasitoid, Aphidius ervi? Evol Ecol 27:165–184. doi:10.1007/s10682-012-9577-z

    Article  Google Scholar 

  70. Ferrari J, Darby AC, Daniell TJ, Godfray HCJ, Douglas AE (2004) Linking the bacterial community in pea aphids with host-plant use and natural enemy resistance. Ecol Entomol 29:60–65

    Article  Google Scholar 

  71. Simon JC, Carre S, Boutin M, Prunier-Leterme N, Sabater-Munoz B, Latorre A, Bournoville R (2003) Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc R Soc B Biol Sci 270:1703–1712. doi:10.1098/rspb.2003.2430

    Article  Google Scholar 

  72. Stireman JO, Nason JD, Heard SB (2005) Host-associated genetic differentiation in phytophagous insects: general phenomenon or isolated exceptions? Evidence from a goldenrod-insect community. Evolution 59:2573–2587. doi:10.1554/05-222.1

    Article  CAS  PubMed  Google Scholar 

  73. Peccoud J, Ollivier A, Plantegenest M, Simon JC (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc Natl Acad Sci U S A 106:7495–7500. doi:10.1073/pnas.0811117106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Ferrari J, Scarborough CL, Godfray HCJ (2007) Genetic variation in the effect of a facultative symbiont on host-plant use by pea aphids. Oecologia 153:323–329. doi:10.1007/s00442-007-0730-2

    Article  PubMed  Google Scholar 

  75. Leonardo TE (2004) Removal of a specialization-associated symbiont does not affect aphid fitness. Ecol Lett 7:461–468. doi:10.1111/j.1461-0248.2004.00602.x

    Article  Google Scholar 

  76. Coeur d'Acier A, Jousselin E, Martin JF, Rasplus JY (2007) Phylogeny of the genus Aphis Linnaeus, 1758 (Homoptera: Aphididae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 42:598–611. doi:10.1016/j.ympev.2006.10.006

    Article  PubMed  Google Scholar 

  77. Takahashi R (1966) Descriptions of some new and little known species of Aphis of Japan, with key to species. Trans Am Entomol Soc 92:519–556

    Google Scholar 

  78. Zhang G-X, Zhong T-S (1981) Studies on Chinese Aphis craccivora complex with descriptions of two new species and two new subspecies. Sinozoologia 1:39–43

    Google Scholar 

  79. Medina RF, Nachappa P, Tamborindeguy C (2011) Differences in bacterial diversity of host-associated populations of Phylloxera notabilis Pergande (Hemiptera: Phylloxeridae) in pecan and water hickory. J Evol Biol 24:761–771. doi:10.1111/j.1420-9101.2010.02215.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge A. Dehnel, N. Dutta, A. Maldonado, J. McCord, and J. Rigdon for laboratory assistance, and the many individuals who helped procure aphids for us to screen: G. Angelella, H. Arevelo, H. Barahoei, J. Castillo, M. Forister, K. Giles, R. Giordano, J. Harmon, N. Perez Hidalgo, I. Hoeschle-Zeledon, D. Hogg, C. Hsu, D. Lagos, B. Lavandero, L. Malik, S. Muranaka, S. Murphy, J. Palumbo, O. Petrovic-Obradovic, X. Pons, G. Rondoni, M. Saethre, N. Schellhorn, N. Seuhs, P. Stansly, M. Tamo, Z. Tomanovic, M. Tuda, L. Wu, T. Zaviezo, and E. Zchori-Fein. This study was funded by USDA-AFRI Grant #2009-65104-05983 and the University of Kentucky Department of Entomology. This is publication 13-08-127 of the Kentucky Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. White.

Additional information

The nucleotide sequence data reported in this manuscript have been submitted to the DDBJ/EMBL/GenBank databases under accession numbers KF362016–KF362043, with a public release date of September 13, 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 197 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brady, C.M., Asplen, M.K., Desneux, N. et al. Worldwide Populations of the Aphid Aphis craccivora Are Infected with Diverse Facultative Bacterial Symbionts. Microb Ecol 67, 195–204 (2014). https://doi.org/10.1007/s00248-013-0314-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0314-0

Keywords

Navigation