Skip to main content
Log in

Coastal Seawater Bacteria Harbor a Large Reservoir of Plasmid-Mediated Quinolone Resistance Determinants in Jiaozhou Bay, China

  •  
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Diversity and prevalence of plasmid-mediated quinolone resistance determinants were investigated in environmental bacteria isolated from surface seawater of Jiaozhou Bay, China. Five qnr gene alleles were identified in 34 isolates by PCR amplification, including qnrA3 gene in a Shewanella algae isolate, qnrB9 gene in a Citrobacter freundii isolate, qnrD gene in 22 Proteus vulgaris isolates, qnrS1 gene in 1 Enterobacter sp. and 4 Klebsiella spp. isolates, and qnrS2 gene in 1 Pseudomonas sp. and 4 Pseudoalteromonas sp. isolates. The qnrC, aac(6′)-Ib-cr, and qepA genes could not be detected in this study. The 22 qnrD-positive Proteus vulgaris isolates could be differentiated into four genotypes based on ERIC-PCR assay. The qnrS1 and qnrD genes could be transferred to Escherichia coli J53 AziR or E. coli TOP10 recipient strains using conjugation or transformation methods. Among the 34 qnr-positive isolates, 30 had a single point mutation in the QRDRs of GyrA protein (Ala67Ser, Ser83Ile, or Ser83Thr), indicating that cooperation of chromosome- and plasmid-mediated resistance contributed to the spread and evolution of quinolone resistance in this coastal bay. Eighty-five percent of the isolates were also found to be resistant to ampicillin, and bla CMY , bla OXY , bla SHV , and bla TEM genes were detected in five isolates that also harbored the qnrB9 or qnrS1 gene. Our current study is the first identification of qnrS2 gene in Pseudoalteromonas and Pseudomonas strains, and qnrD gene in Proteus vulgaris strains. High prevalence of diverse qnr genes in Jiaozhou Bay indicates that coastal seawater may serve as an important reservoir, natural source, and dissemination vehicle of quinolone resistance determinants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Altschul S, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  2. Bae IK, Park I, Lee JJ, Sun HI, Park KS, Lee JE, Ahn JH, Lee SH, Woo GJ (2010) Novel variants of the qnrB gene, qnrB22 and qnrB23, in Citrobacter werkmanii and Citrobacter freundii. Antimicrob Agents Chemother 54:3068–3069

    Article  PubMed  CAS  Google Scholar 

  3. Baquero F, Martínez JL, Cantón R (2008) Antibiotics and antibiotic resistance in water environments. Curr Opin Biotechnol 19:260–265

    Article  PubMed  CAS  Google Scholar 

  4. Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, Landman D (2005) Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 56:128–132

    Article  PubMed  CAS  Google Scholar 

  5. Briales A, Rodríguez-Martínez JM, Velasco C, Diaz de Alba P, Dominguez-Herrera J, Pachon J, Pascual A (2011) In vitro effect of qnrA1, qnrB1, and qnrS1 genes on fluoroquinolone activity against isogenic Escherichia coli isolates with mutations in gyrA and parC. Antimicrob Agents Chemother 55:1266–1269

    Article  PubMed  CAS  Google Scholar 

  6. Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8:1137–1144

    Article  PubMed  CAS  Google Scholar 

  7. Cantón R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15:20–25

    Article  PubMed  Google Scholar 

  8. Cattoir V, Nordmann P (2009) Plasmid-mediated quinolone resistance in gram-negative bacterial species: an update. Curr Med Chem 16:1028–1046

    Article  PubMed  CAS  Google Scholar 

  9. Cattoir V, Poirel L, Aubert C, Soussy CJ, Nordmann P (2008) Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental Aeromonas spp. Emerg Infect Dis 14:231–237

    Article  PubMed  CAS  Google Scholar 

  10. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P (2007) Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother 60:394–397

    Article  PubMed  CAS  Google Scholar 

  11. Cavaco LM, Hasman H, Xia S, Aarestrup FM (2009) qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob Agents Chemother 53:603–608

    Article  PubMed  CAS  Google Scholar 

  12. Colom K, Pérez J, Alonso R, Fernández-Aranguiz A, Lariňo E, Cisterna R (2003) Simple and reliable multiplex PCR assay for detection of bla TEM, bla SHV and bla OXA-1 in Enterobacteriaceae. FEMS Microbiol Lett 223:147–151

    Article  PubMed  CAS  Google Scholar 

  13. Dang H, Chen R, Wang L, Guo L, Chen P, Tang Z, Tian F, Li S, Klotz MG (2010) Environmental factors shape sediment anammox bacterial communities in hypernutrified Jiaozhou Bay, China. Appl Environ Microbiol 76:7036–7047

    Article  PubMed  CAS  Google Scholar 

  14. Dang H, Li J, Chen R, Wang L, Guo L, Zhang Z, Klotz MG (2010) Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing Betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Appl Environ Microbiol 76:4691–4702

    Article  PubMed  CAS  Google Scholar 

  15. Dang H, Ren J, Song L, Sun S, An L (2008) Diverse tetracycline resistant bacteria and resistance genes from coastal waters of Jiaozhou Bay. Microb Ecol 55:237–246

    Article  PubMed  CAS  Google Scholar 

  16. Dang H, Ren J, Song L, Sun S, An L (2008) Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiaozhou Bay, China. World J Microbiol Biotechnol 24:209–217

    Article  CAS  Google Scholar 

  17. Dang H, Song L, Chen M, Chang Y (2006) Concurrence of cat and tet genes in multiple antibiotic resistant bacteria isolated from a sea cucumber and sea urchin mariculture farm in China. Microb Ecol 52:634–643

    Article  PubMed  CAS  Google Scholar 

  18. Dang H, Zhang X, Song L, Chang Y, Yang G (2006) Molecular characterizations of oxytetracycline resistant bacteria and their resistance genes in mariculture waters of China. Mar Pollut Bull 52:1494–1503

    Article  PubMed  CAS  Google Scholar 

  19. Dang H, Zhang X, Song L, Chang Y, Yang G (2007) Molecular determination of oxytetracycline-resistant bacteria and their resistance genes from mariculture environments of China. J Appl Microbiol 103:2580–2592

    Article  PubMed  CAS  Google Scholar 

  20. Dang H, Zhao J, Song L, Chen M, Chang Y (2009) Molecular characterizations of chloramphenicol- and oxytetracycline-resistant bacteria and resistance genes in mariculture waters of China. Mar Pollut Bull 58:987–994

    Article  PubMed  CAS  Google Scholar 

  21. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433

    Article  PubMed  CAS  Google Scholar 

  22. Dutour C, Bonnet R, Marchandin H, Boyer M, Chanal C, Sirot D, Sirot J (2002) CTX-M-1, CTX-M-3, and CTX-M-14 β-lactamases from Enterobacteriaceae isolated in France. Antimicrob Agents Chemother 46:534–537

    Article  PubMed  CAS  Google Scholar 

  23. Fortini D, Fashae K, García-Fernández A, Villa L, Carattoli A (2011) Plasmid-mediated quinolone resistance and β-lactamases in Escherichia coli from healthy animals from Nigeria. J Antimicriob Chemother 66:1269–1272

    Article  CAS  Google Scholar 

  24. Gootz TD (2010) The global problem of antibiotic resistance. Crit Rev Immunol 30:79–93

    PubMed  CAS  Google Scholar 

  25. Grundmann H, Klugman KP, Walsh T, Ramon-Pardo P, Sigauque B, Khan W, Laxminarayan R, Heddini A, Stelling J (2011) A framework for global surveillance of antibiotic resistance. Drug Resist Updat 14:79–87

    Article  PubMed  Google Scholar 

  26. Gunell M, Webber MA, Kotilainen P, Lilly AJ, Caddick JM, Jalava J, Huovinen P, Siitonen A, Hakanen AJ, Piddock LJ (2009) Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Antimicrob Agents Chemother 53:3832–3836

    Article  PubMed  CAS  Google Scholar 

  27. Han C, Yang Y, Wang M, Wang A, Lu Q, Xu X, Wang C, Liu L, Deng Q, Shen X (2010) The prevalence of plasmid-mediated quinolone resistance determinants among clinical isolates of ESBL or AmpC-producing Escherichia coli from Chinese pediatric patients. Microbiol Immunol 54:123–128

    Article  PubMed  CAS  Google Scholar 

  28. Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K (2005) Cloning of a novel gene for quinolone resistance from a transferable plasmid in Shigella flexneri 2b. Antimicrob Agents Chemother 49:801–803

    Article  PubMed  CAS  Google Scholar 

  29. Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64:i3–i10

    Article  PubMed  CAS  Google Scholar 

  30. Hooper DC (2001) Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis 7:337–341

    Article  PubMed  CAS  Google Scholar 

  31. Hooper DC (2001) Mechanisms of action of antimicrobials: focus on fluoroquinolones. Clin Infect Dis 32:S9–S15

    Article  PubMed  CAS  Google Scholar 

  32. Ishida Y, Ahmed AM, Mahfouz NB, Kimura T, El-khodery SA, Moawad AA, Shimamoto T (2010) Molecular analysis of antimicrobial resistance in gram-negative bacteria isolated from fish farms in Egypt. J Vet Med Sci 72:727–734

    Article  PubMed  CAS  Google Scholar 

  33. Jacoby G, Cattoir V, Hooper D, Martínez-Martínez L, Nordmann P, Pascual A, Poirel L, Wang M (2008) qnr gene nomenclature. Antimicrob Agents Chemother 52:2297–2299

    Article  PubMed  CAS  Google Scholar 

  34. Jacoby GA, Gacharna N, Black TA, Miller GH, Hooper DC (2009) Temporal appearance of plasmid-mediated quinolone resistance genes. Antimicrob Agents Chemother 53:1665–1666

    Article  PubMed  CAS  Google Scholar 

  35. Jacoby GA, Griffin C, Hooper DC (2011) Citrobacter spp. as a source of qnrB alleles. Antimicrob Agents Chemother 55:4979–4984

    Article  PubMed  CAS  Google Scholar 

  36. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC (2006) qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Chemother 50:1178–1182

    Article  PubMed  CAS  Google Scholar 

  37. Jeong HS, Bae K, Shin JH, Kim SH, Chang CL, Jeong J, Kim S, Lee CH, Ryoo NH, Lee JN (2011) Fecal colonization of Enterobacteriaceae carrying plasmid-mediated quinolone resistance determinants in Korea. Microb Drug Resist 17:507–512

    Article  PubMed  CAS  Google Scholar 

  38. Kim HB, Park CH, Gavin M, Jacoby GA, Hooper DC (2011) Cold shock induces qnrA expression in Shewanella algae. Antimicrob Agents Chemother 55:414–416

    Article  PubMed  CAS  Google Scholar 

  39. Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC (2009) Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 53:639–645

    Article  PubMed  CAS  Google Scholar 

  40. Lascols C, Podglajen I, Verdet C, Gautier V, Gutmann L, Soussy CJ, Collatz E, Cambau E (2008) A plasmid-borne Shewanella algae gene, qnrA3, and its possible transfer in vivo between Kluyvera ascorbata and Klebsiella pneumoniae. J Bacteriol 190:5217–5223

    Article  PubMed  CAS  Google Scholar 

  41. Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, Bzoma S, Cizek A (2010) Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum β-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland. Appl Environ Microbiol 76:8126–8134

    Article  PubMed  CAS  Google Scholar 

  42. Liu BT, Wang XM, Liao XP, Sun J, Zhu HQ, Chen XY, Liu YH (2011) Plasmid-mediated quinolone resistance determinants oqxAB and aac(6)-Ib-cr and extended-spectrum β-lactamase gene blaCTX-M-24 co-located on the same plasmid in one Escherichia coli strain from China. J Antimicrob Chemother 66:1638–1639

    Article  PubMed  CAS  Google Scholar 

  43. Liu JH, Deng YT, Zeng ZL, Gao JH, Chen L, Arakawa Y, Chen ZL (2008) Coprevalence of plasmid-mediated quinolone resistance determinants QepA, Qnr, and AAC(6′)-Ib-cr among 16S rRNA methylase RmtB-producing Escherichia coli isolates from pigs. Antimicrob Agents Chemoth 52:2992–2993

    Article  CAS  Google Scholar 

  44. Luo Y, Xu L, Rysz M, Wang Y, Zhang H, Alvarez PJ (2011) Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River basin, China. Environ Sci Technol 45:1827–1833

    Article  PubMed  CAS  Google Scholar 

  45. Martinez JL (2009) Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ Pollut 157:2893–2902

    Article  PubMed  CAS  Google Scholar 

  46. Martinez JL (2009) The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc Biol Sci 276:2521–2530

    Article  PubMed  Google Scholar 

  47. Matínez-Martínez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351:797–799

    Article  Google Scholar 

  48. Ogbolu DO, Daini OA, Ogunledun A, Alli AO, Webber MA (2011) High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. Int J Antimicrob Agents 37:62–66

    Article  PubMed  CAS  Google Scholar 

  49. Ozgumus OB, Sandalli C, Sevim A, Celik-Sevim E, Sivri N (2009) Class 1 and class 2 integrons and plasmid-mediated antibiotic resistance in coliforms isolated from ten rivers in northern Turkey. J Microbiol 47:19–27

    Article  PubMed  CAS  Google Scholar 

  50. Pai H, Seo MR, Choi TY (2007) Association of QnrB determinants and production of extended-spectrum β-lactamases or plasmid-mediated AmpC β-lactamases in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 51:366–368

    Article  PubMed  CAS  Google Scholar 

  51. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50:3953–3955

    Article  PubMed  CAS  Google Scholar 

  52. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162

    Article  PubMed  Google Scholar 

  53. Picão RC, Poirel L, Demarta A, Silva CS, Corvaglia AR, Petrini O, Nordmann P (2008) Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. J Antimicrob Chemother 62:948–950

    Article  PubMed  Google Scholar 

  54. Poirel L, Liard A, Rodriguez-Martinez JM, Nordmann P (2005) Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother 56:1118–1121

    Article  PubMed  CAS  Google Scholar 

  55. Poirel L, Rodriguez-Marthinez JM, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother 49:3523–3525

    Article  PubMed  CAS  Google Scholar 

  56. Rohlf FJ (2000) NTSYS-pc: numerical taxonomy and multivariate analysis system, version 2.1. Exeter Software, Setauket, New York

    Google Scholar 

  57. Saga T, Kaku M, Onodera Y, Yamachika S, Sato K, Takase H (2005) Vibrio parahaemolyticus chromosomal qnr homologue VPA0095: demonstration by transformation with a mutated gene of its potential to reduce quinolone susceptibility in Escherichia coli. Antimicrob Agents Chemother 49:2144–2145

    Article  PubMed  CAS  Google Scholar 

  58. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  59. Sánchez MB, Hernández A, Rodríguez-Martínez JM, Martínez-Martínez L, Martínez JL (2008) Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants. BMC Microbiol 8:148

    Article  PubMed  Google Scholar 

  60. Seo MR, Park YS, Pai H (2010) Characteristics of plasmid-mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant isolates of Klebsiella pneumoniae and Escherichia coli in Korea. Chemotherapy 56:46–53

    Article  PubMed  CAS  Google Scholar 

  61. Shao Y, Xiong Z, Li X, Hu L, Shen J, Li T, Hu F, Chen S (2011) Prevalence of plasmid-mediated quinolone resistance determinants in Citrobacter freundii isolates from Anhui, China. J Med Microbiol 60:1801–1805

    Article  PubMed  CAS  Google Scholar 

  62. Speltini A, Sturini M, Maraschi F, Profumo A (2010) Fluoroquinolone antibiotics in environmental waters: sample preparation and determination. J Sep Sci 33:1115–1131

    PubMed  CAS  Google Scholar 

  63. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22:664–689

    Article  PubMed  CAS  Google Scholar 

  64. Tamang MD, Seol SY, Oh J-Y, Kang HY, Lee JC, Lee YC, Cho DT, Kim J (2008) Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital. Antimicrob Agents Chemother 52:4159–4162

    Article  PubMed  CAS  Google Scholar 

  65. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  66. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  67. Tran JH, Jacoby GA (2002) Mechanism of plasmid-mediated quinolone resistance. P Nat Acad Sci USA 99:5638–5642

    Article  CAS  Google Scholar 

  68. Veldman K, Cavaco LM, Mevius D, Battisti A, Franco A, Botteldoorn N, Bruneau M, Perrin-Guyomard A, Cerny T, De Frutos EC, Guerra B, Schroeter A, Gutierrez M, Hopkins K, Myllyniemi AL, Sunde M, Wasyl D, Aarestrup FM (2011) International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J Antimicrob Chemother 66:1278–1286

    Article  PubMed  CAS  Google Scholar 

  69. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  PubMed  CAS  Google Scholar 

  70. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, Ding H, Deng Q, Zhang H, Wang C, Liu L, Xu X, Wang L, Shen X (2008) Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infect Dis 8:68–73

    Article  PubMed  Google Scholar 

  71. Wang C, Dang H, Ding Y (2008) Incidence of diverse integrons and β-lactamase genes in environmental Enterobacteriaceae isolates from Jiaozhou Bay, China. World J Microbiol Biotechnol 24:2889–2896

    Article  CAS  Google Scholar 

  72. Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, Hooper DC, Wang M (2009) New plasmid-mediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Chemother 53:1892–1897

    Article  PubMed  CAS  Google Scholar 

  73. Wang M, Jacoby GA, Mills DM, Hooper DC (2009) SOS regulation of qnrB expression. Antimicrob Agents Chemother 53:821–823

    Article  PubMed  CAS  Google Scholar 

  74. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  75. Wright GD (2010) Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol 13:589–594

    Article  PubMed  CAS  Google Scholar 

  76. Yang JF, Ying GG, Zhao JL, Tao R, Su HC, Chen F (2010) Simultaneous determination of four classes of antibiotics in sediments of the Pearl Rivers using RRLC-MS/MS. Sci Total Environ 408:3424–3432

    Article  PubMed  CAS  Google Scholar 

  77. Zhang R, Cai JC, Zhou HW, Chen GX (2010) Prevalence of qnr and aac(6′)-Ib-cr genes in water-borne environmental bacteria and clinical isolates of Citrobacter freundii in China. Chin J Microbiol Immunol 30:371–376

    CAS  Google Scholar 

  78. Zhao J, Chen Z, Chen S, Deng Y, Liu Y, Tian W, Huang X, Wu C, Sun Y, Sun Y, Zeng Z, Liu JH (2010) Prevalence and dissemination of oqxAB in Escherichia coli isolates from animals, farmworkers, and the environment. Antimicrob Agents Chemother 54:4219–4224

    Article  PubMed  CAS  Google Scholar 

  79. Zhao J, Dang H (2011) Identification of a globally distributed clinical streptomycin-resistance plasmid and other resistance determinants in a coastal bay of China. Lett Appl Microbiol 52:1–8

    Article  PubMed  CAS  Google Scholar 

  80. Zhu D, Zhang Y, Wang F, Guo Y, Jiang X, Ni Y, Sun J, Ying C, Wang Y, Wang C, Wang A, Jiang Y, Tang J, Zhang H, Li W, Shen Y, Jin W, Zhou T, Chen X, Zhang B, Huang W, Yang H, Wei Y, Tang R, Ding X, Wu L, Wu N, Wang R, Fang H, Lu X, Zhu A (2010) Surveillance report of bacterial resistance from hospitals in Shanghai in 2009. Chin J Infect Chemother 10:403–413

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor George Jacoby and Minggui Wang for providing the E. coli J53 AziR strain. This work was financially supported by the Fundamental Research Funds for the Central Universities of China grants 10CX04021A and 09CX05005A, the Doctor Science Foundation of China University of Petroleum (East China) grant, the China National Natural Science Foundation grants 91028011 and 41076091, and the Key Scientific and Technological Development Program of the National Qingdao Economic & Technical Development Zone grant 2009-2-34.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyue Dang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Jy., Dang, H. Coastal Seawater Bacteria Harbor a Large Reservoir of Plasmid-Mediated Quinolone Resistance Determinants in Jiaozhou Bay, China. Microb Ecol 64, 187–199 (2012). https://doi.org/10.1007/s00248-012-0008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0008-z

Keywords

Navigation