Skip to main content

Advertisement

Log in

Adherence to Streptococci Facilitates Fusobacterium nucleatum Integration into an Oral Microbial Community

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The development of multispecies oral microbial communities involves complex intra- and interspecies interactions at various levels. The ability to adhere to the resident bacteria or the biofilm matrix and overcome community resistance are among the key factors that determine whether a bacterium can integrate into a community. Fusobacterium nucleatum is a prevalent Gram-negative oral bacterial species that is able to adhere to a variety of oral microbes and has been implicated in playing an important role in the establishment of multispecies oral microbial community. However, the majority of experiments thus far has focused on the physical adherence between two species as measured by in vitro co-aggregation assays, while the community-based effects on the integration of F. nucleatum into multispecies microbial community remains to be investigated. In this study, we focus on community integration of F. nucleatum. We demonstrated using an established in vitro mice oral microbiota (O-mix) that the viability of F. nucleatum was significantly reduced upon addition to the O-mix due to cell contact-dependent induction of hydrogen peroxide (H2O2) production by oral community. Interestingly, this inhibitory effect was significantly alleviated when F. nucleatum was allowed to adhere to its known interacting partner species (such as Streptococcus sanguinis) prior to addition. Furthermore, this aggregate formation-dependent protection was absent in the F. nucleatum mutant strain ΔFn1526 that is unable to bind to a number of Gram-positive species. More importantly, this protective effect was also observed during integration of F. nucleatum into a human salivary microbial community (S-mix). These results suggest that by adhering to other oral microbes, F. nucleatum is able to mask the surface components that are recognized by H2O2 producing oral community members. This evasion strategy prevents detection by antagonistic oral bacteria and allows integration into the developing oral microbial community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE (2005) Defining the normal bacterial flora of the oral cavity. J Clin Microbiol 43:5721–5732

    Article  PubMed  Google Scholar 

  2. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN et al (2001) Bacterial diversity in human subgingival plaque. J Bacteriol 183:3770–3783

    Article  PubMed  CAS  Google Scholar 

  3. Paster BJ, Olsen I, Aas JA, Dewhirst FE (2006) The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000 42:80–87

    Article  PubMed  Google Scholar 

  4. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR et al (2010) The human oral microbiome. J Bacteriol 192:5002–5017

    Article  PubMed  CAS  Google Scholar 

  5. Dahlén G (1993) Role of suspected periodontopathogens in microbiological monitoring of periodontitis. Adv Dent Res 7:163–174

    PubMed  Google Scholar 

  6. Marsh PD (1994) Microbial ecology of dental plaque and its significance in health and disease. Adv Dent Res 8:263–271

    PubMed  CAS  Google Scholar 

  7. Nishihara T, Koseki T (2004) Microbial etiology of periodontitis. Periodontol 2000 36:14–26

    Article  PubMed  Google Scholar 

  8. Kolenbrander PE (2000) Oral microbial communities: biofilms, interactions, and genetic systems1. Annu Rev Microbiol 54:413–437

    Article  PubMed  CAS  Google Scholar 

  9. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS et al (2002) Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505

    Article  PubMed  CAS  Google Scholar 

  10. Kolenbrander PE, Palmer RJ, Periasamy S, Jakubovics NS (2010) Oral multispecies biofilm development and the key role of cell–cell distance. Nat Rev Micro 8:471–480

    Article  CAS  Google Scholar 

  11. Kuramitsu HK, He X, Lux R, Anderson MH, Shi W (2007) Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670

    Article  PubMed  CAS  Google Scholar 

  12. Kolenbrander PE, Egland PG, Diaz PI, Palmer RJ Jr (2005) Genome–genome interactions: bacterial communities in initial dental plaque. Trends Microbiol 13:11–15

    Article  PubMed  CAS  Google Scholar 

  13. Zijnge V, van Leeuwen MBM, Degener JE, Abbas F, Thurnheer T et al (2010) Oral biofilm architecture on natural teeth. PLoS One 5:e9321

    Article  PubMed  Google Scholar 

  14. Vollaard E, Clasener H (1994) Colonization resistance. Antimicrob Agents Chemother 38:409–414

    PubMed  CAS  Google Scholar 

  15. He X, Tian Y, Guo L, Lux R, Zusman D et al (2010) Oral-derived bacterial flora defends its domain by recognizing and killing intruders—a molecular analysis using Escherichia coli as a model intestinal bacterium. Microb Ecol 60:655–664

    Article  PubMed  CAS  Google Scholar 

  16. He X, Tian Y, Guo L, Ano T, Lux R et al (2010) In vitro communities derived from oral and gut microbial floras inhibit the growth of bacteria of foreign origins. Microb Ecol 60:665–676

    Article  PubMed  Google Scholar 

  17. Chun J, Kim K, Lee J-H, Choi Y (2010) The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol 10:101

    Article  PubMed  Google Scholar 

  18. Elliott DR, Wilson M, Buckley CMF, Spratt DA (2005) Cultivable oral microbiota of domestic dogs. J Clin Microbiol 43:5470–5476

    Article  PubMed  Google Scholar 

  19. Citron Diane M (2002) Update on the taxonomy and clinical aspects of the genus Fusobacterium. Clin Infect Dis 35:S22–S27

    Article  PubMed  CAS  Google Scholar 

  20. Guggenheim B, Giertsen E, Schüpbach P, Shapiro S (2001) Validation of an in vitro biofilm model of supragingival plaque. J Dent Res 80:363–370

    Article  PubMed  CAS  Google Scholar 

  21. Hintao J, Teanpaisan R, Chongsuvivatwong V, Ratarasan C, Dahlen G (2007) The microbiological profiles of saliva, supragingival and subgingival plaque and dental caries in adults with and without type 2 diabetes mellitus. Oral Microbiol Immunol 22:175–181

    Article  PubMed  CAS  Google Scholar 

  22. Palmer RJJ, Diaz PI, Kolenbrander PE (2004) Biocomplexity in the oral cavity—the basics of structure in supragingival bacterial communities. Biofilms 1:329–335

    Article  Google Scholar 

  23. Zaura E, Keijser B, Huse S, Crielaard W (2009) Defining the healthy "core microbiome" of oral microbial communities. BMC Microbiol 9:259

    Article  PubMed  Google Scholar 

  24. Haffajee AD, Socransky SS, Patel MR, Song X (2008) Microbial complexes in supragingival plaque. Oral Microbiol Immunol 23:196–205

    Article  PubMed  CAS  Google Scholar 

  25. Kaplan CW, Lux R, Haake SK, Shi W (2009) The Fusobacterium nucleatum outer membrane protein RadD is an arginine-inhibitable adhesin required for inter-species adherence and the structured architecture of multispecies biofilm. Mol Microbiol 71:35–47

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan CW, Lux R, Huynh T, Jewett A, Shi W et al (2005) Fusobacterium nucleatum apoptosis-inducing outer membrane protein. J Dent Res 84:700–704

    Article  PubMed  CAS  Google Scholar 

  27. Kaplan CW, Ma X, Paranjpe A, Jewett A, Lux R et al (2010) Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun 78:4773–4778

    Article  PubMed  CAS  Google Scholar 

  28. Tian Y, He X, Torralba M, Yooseph S, Nelson KE et al (2010) Using DGGE profiling to develop a novel culture medium suitable for oral microbial communities. Mol Oral Microbiol 25:357–367

    Article  PubMed  CAS  Google Scholar 

  29. Cisar JO, Kolenbrander PE, McIntire FC (1979) Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun 24:742–752

    PubMed  CAS  Google Scholar 

  30. Kreth J, Merritt J, Shi W, Qi F (2005) Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203

    Article  PubMed  CAS  Google Scholar 

  31. Uehara Y, Kikuchi K, Nakamura T, Nakama H, Agematsu K et al (2001) H2O2 produced by viridans group Streptococci may contribute to inhibition of methicillin-resistant Staphylococcus aureus colonization of oral cavities in newborns. Clin Infect Dis 32:1408–1413

    Article  PubMed  CAS  Google Scholar 

  32. Dvd W, Berghuis-de Vries JM, Lekkerkerk-van der Wees JEC (1971) Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hyg (Lond) 69:405–411

    Article  Google Scholar 

  33. Kaplan CW, Lux R, Huynh T, Jewett A, Shi W et al (2005) Fusobacterium nucleatum apoptosis-inducing outer membrane protein. J Dent Res 84:700–704

    Article  PubMed  CAS  Google Scholar 

  34. Liévin V, Peiffer I, Hudault S, Rochat F, Brassart D et al (2000) Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity. Gut 47:646–652

    Article  PubMed  Google Scholar 

  35. Lamont R, Jenkinson H (2000) Adhesion as an ecological determinant in the oral cavity. In: Kuramitsu KK, Ellen RP (eds) Oral bacterial ecology: the molecular basis. Norfolk, Horizon Scientific, pp 131–168

    Google Scholar 

  36. Kolenbrander PE, London J (1993) Adhere today, here tomorrow: oral bacterial adherence. J Bacteriol 175:3247–3252

    PubMed  CAS  Google Scholar 

  37. Takahashi N (2003) Acid-neutralizing activity during amino acid fermentation by Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum. Oral Microbiol Immunol 18:109–113

    Article  PubMed  CAS  Google Scholar 

  38. Tong H, Chen W, Merritt J, Qi F, Shi W et al (2007) Streptococcus oligofermentans inhibits Streptococcus mutans through conversion of lactic acid into inhibitory H2O2: a possible counteroffensive strategy for interspecies competition. Mol Microbiol 63:872–880

    Article  PubMed  CAS  Google Scholar 

  39. Coyne MJ, Reinap B, Lee MM, Comstock LE (2005) Human symbionts use a host-like pathway for surface fucosylation. Science 307:1778–1781

    Article  PubMed  CAS  Google Scholar 

  40. Pizza M, Donnelly J, Rappuoli R (2008) Factor H-binding protein, a unique meningococcal vaccine antigen. Vaccine 26:I46–I48

    Article  PubMed  CAS  Google Scholar 

  41. Hellwage J, Meri T, Heikkilä T, Alitalo A, Panelius J et al (2001) The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. J Biol Chem 276:8427–8435

    Article  PubMed  CAS  Google Scholar 

  42. Janulczyk R, Iannelli F, Sjöholm AG, Pozzi G, Björck L (2000) Hic, a novel surface protein of Streptococcus pneumoniae that interferes with complement function. J Biol Chem 275:37257–37263

    Article  PubMed  CAS  Google Scholar 

  43. Jakubovics NS, Gill SR, Vickerman MM, Kolenbrander PE (2008) Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 66:637–644

    Article  PubMed  CAS  Google Scholar 

  44. Jakubovics NS, Gill SR, Iobst SE, Vickerman MM, Kolenbrander PE (2008) Regulation of gene expression in a mixed-genus community: stabilized arginine biosynthesis in Streptococcus gordonii by coaggregation with Actinomyces naeslundii. J Bacteriol 190:3646–3657

    Article  PubMed  CAS  Google Scholar 

  45. Kuboniwa M, Hendrickson E, Xia Q, Wang T, Xie H et al (2009) Proteomics of Porphyromonas gingivalis within a model oral microbial community. BMC Microbiol 9:98

    Article  PubMed  Google Scholar 

  46. Merritt J, Niu G, Okinaga T, Qi F (2009) Autoaggregation response of Fusobacterium nucleatum. Appl Environ Microbiol 75:7725–7733

    Article  PubMed  CAS  Google Scholar 

  47. Lancy PJ, Dirienzo JM, Appelbaum B, Rosan B, Holt SC (1983) Corncob formation between Fusobacterium nucleatum and Streptococcus sanguinis. Infect Immun 40:303–309

    PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by US National Institutes of Health (NIH) Grants (DE020102 and DE021108) and National Basic Research Program of China (2011CB512108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate Lux.

Additional information

Xuesong He and Wei Hu contributed equally to this work.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 10712 kb)

ESM 2

(DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Hu, W., Kaplan, C.W. et al. Adherence to Streptococci Facilitates Fusobacterium nucleatum Integration into an Oral Microbial Community. Microb Ecol 63, 532–542 (2012). https://doi.org/10.1007/s00248-011-9989-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9989-2

Keywords

Navigation