Skip to main content

Advertisement

Log in

Change in Land Use Alters the Diversity and Composition of Bradyrhizobium Communities and Led to the Introduction of Rhizobium etli into the Tropical Rain Forest of Los Tuxtlas (Mexico)

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nitrogen-fixing bacteria of the Bradyrhizobium genus are major symbionts of legume plants in American tropical forests, but little is known about the effects of deforestation and change in land use on their diversity and community structure. Forest clearing is followed by cropping of bean (Phaseolus vulgaris) and maize as intercropped plants in Los Tuxtlas tropical forest of Mexico. The identity of bean-nodulating rhizobia in this area is not known. Using promiscuous trap plants, bradyrhizobia were isolated from soil samples collected in Los Tuxtlas undisturbed forest, and in areas where forest was cleared and land was used as crop fields or as pastures, or where secondary forests were established. Rhizobia were also trapped by using bean plants. Bradyrhizobium strains were classified into genospecies by dnaK sequence analysis supported by recA, glnII and 16S-23S rDNA IGS loci analyses. A total of 29 genospecies were identified, 24 of which did not correspond to any described taxa. A reduction in Bradyrhizobium diversity was observed when forest was turned to crop fields or pastures. Diversity seemed to recover to primary forest levels in secondary forests that derived from abandoned crop fields or pastures. The shifts in diversity were not related to soil characteristics but seemingly to the density of nodulating legumes present at each land use system (LUS). Bradyrhizobium community composition in soils was dependent on land use; however, similarities were observed between crop fields and pastures but not among forest and secondary forest. Most Bradyrhizobium genospecies present in forest were not recovered or become rare in the other LUS. Rhizobium etli was found as the dominant bean-nodulating rhizobia present in crop fields and pastures, and evidence was found that this species was introduced in Los Tuxtlas forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Giller KE, Cadisch G (1995) Future benefits from biological nitrogen fixation: an ecological approach to agriculture. Plant Soil 174:255–277

    Article  CAS  Google Scholar 

  2. Giller KE (2001) Nitrogen fixation in tropical cropping systems. CABI, Wallington

    Book  Google Scholar 

  3. Crews TE (1999) The presence of nitrogen fixing legumes in terrestrial communities: evolutionary vs ecological considerations. Biogeochemistry 46:233–246

    CAS  Google Scholar 

  4. Sprent J (2005) West African legumes: the role of nodulation and nitrogen fixation. New Phytol 167:326–330

    Article  PubMed  CAS  Google Scholar 

  5. Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  6. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P, Mergeay M, Vandamme P (2001) Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735

    Article  PubMed  CAS  Google Scholar 

  7. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of Proteobacteria. Nature 411:948–950

    Article  PubMed  CAS  Google Scholar 

  8. Parker MA (2008) Symbiotic relationships of legumes and nodule bacteria on Barro Colorado Island, Panama: a review. Microb Ecol 55:662–672

    Article  PubMed  Google Scholar 

  9. Parker MA (2004) rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica. Syst Appl Microbiol 27:334–342

    Article  PubMed  CAS  Google Scholar 

  10. Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666

    Article  Google Scholar 

  11. Moreira FM, Haukka K, Young JP (1998) Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol Ecol 7:889–895

    Article  PubMed  CAS  Google Scholar 

  12. Guevara S, Laborde J, Sánchez-Ríos G (2004) Los Tuxtlas. El Paisaje de la Sierra. Instituto de Ecología, A.C, Xalapa

    Google Scholar 

  13. Martínez-Romero E (2003) Diversity of RhizobiumPhaseolus vulgaris symbiosis: overview and perspectives. Plant Soil 252:11–23

    Article  Google Scholar 

  14. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  PubMed  CAS  Google Scholar 

  15. Borneman J, Triplett E (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  16. Upchurch R, Chiu C-Y, Everett K, Dyszynski G, Coleman DC, Whitman WB (2008) Differences in the composition and diversity of bacterial communities from agricultural and forest soils. Soil Biol Biochem 40:1294–1305

    Article  CAS  Google Scholar 

  17. Chim Chan O, Casper P, Sha LQ, Feng ZL, Fu Y, Yang XD, Ulrich A, Zou XM (2008) Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiol Ecol 64:449–458

    Article  PubMed  Google Scholar 

  18. Jangid K, Williams MA, Franzluebbers AJ, Sanderlin JS, Reeves JH, Jenkins MB, Endale DM, Coleman DC, Whitman WB (2008) Relative impacts of land-use, management intensity and fertilization upon soil microbial community structure in agricultural systems. Soil Biol Biochem 40:2843–2853

    Article  CAS  Google Scholar 

  19. Hartmann M, Lee S, Hallam SJ, Mohn WW (2009) Bacterial, archaeal and eukaryal community structures throughout soil horizons of harvested and naturally disturbed forest stands. Environ Microbiol 11:3045–3062

    Article  PubMed  Google Scholar 

  20. da C Jesus E, Marsh TL, Tiedje JM, de S Moreira FM (2009) Changes in land use alter the structure of bacterial communities in Western Amazon soils. ISME J 3:1004–1011

    Article  PubMed  CAS  Google Scholar 

  21. Faoro H, Alves AC, Souza EM, Rigo LU, Cruz LM, Al-Janabi SM, Monteiro RA, Baura VA, Pedrosa FO (2010) Influence of soil characteristics on the diversity of bacteria in the Southern Brazilian Atlantic Forest. Appl Environ Microbiol 76:4744–4749

    Article  PubMed  CAS  Google Scholar 

  22. Nusslein K, Tiedje JM (1999) Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65:3622–3626

    PubMed  CAS  Google Scholar 

  23. Carney KM, Matson PA, Bohannan BJM (2004) Diversity and composition of tropical soil nitrifiers across a plant diversity gradient and among land-use types. Ecol Lett 7:684–694

    Article  Google Scholar 

  24. Knief C, Vanitchung S, Harvey NW, Conrad R, Dunfield PF, Chidthaisong A (2005) Diversity of methanotrophic bacteria in tropical upland soils under different land uses. Appl Environ Microbiol 71:3826–3831

    Article  PubMed  CAS  Google Scholar 

  25. Bala A, Giller KE (2001) Symbiotic specificity of tropical tree rhizobia for host legumes. New Phytol 149:495–507

    Article  Google Scholar 

  26. Thies JE, Bohlool BB, Singleton PW (1991) Subgroups of the cowpea miscellany: symbiotic specificity within Bradyrhizobium spp. for Vigna unguiculata, Phaseolus lunatus, Arachis hypogaea, and Macroptilium atropurpureum. Appl Environ Microbiol 57:1540–1545

    PubMed  CAS  Google Scholar 

  27. Lewin A, Rosenberg C, Meyer ZAH, Wong CH, Nelson L, Manen JF, Stanley J, Dowling DN, Denarie J, Broughton WJ (1987) Multiple host-specificity loci of the broad host-range Rhizobium sp. NGR234 selected using the widely compatible legume Vigna unguiculata. Plant Mol Biol 8:447–459

    Article  CAS  Google Scholar 

  28. Vincent JM (1970) A manual for the practical study of root nodule bacteria. Blackwell, Oxford

    Google Scholar 

  29. Fahraeus G (1957) The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol 16:374–381

    Article  PubMed  CAS  Google Scholar 

  30. Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  31. Versalovic J, Schneider M, De Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5:25–40

    CAS  Google Scholar 

  32. Haukka K, Lindstrom K, Young JP (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  Google Scholar 

  33. Eardly BD, Young JP, Selander RK (1992) Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nifH genes. Appl Environ Microbiol 58:1809–1815

    PubMed  CAS  Google Scholar 

  34. Hollis AB, Kloos WE, Elkan GH (1981) DNA:DNA hybridization studies of Rhizobiurn japonicum and related Rhizobiaceae. J Gen Microbiol 123:215–222

    Google Scholar 

  35. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  36. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  38. Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  PubMed  CAS  Google Scholar 

  39. Desper R, Gascuel O (2002) Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle. J Comput Biol 9:687–705

    Article  PubMed  CAS  Google Scholar 

  40. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  41. Willems A, Munive A, de Lajudie P, Gillis M (2003) In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 26:203–210

    Article  PubMed  CAS  Google Scholar 

  42. Willems A, Coopman R, Gillis M (2001) Phylogenetic and DNA–DNA hybridization analyses of Bradyrhizobium species. Int J Syst Evol Microbiol 51:111–117

    PubMed  CAS  Google Scholar 

  43. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  44. Rivas R, Martens M, de Lajudie P, Willems A (2009) Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32:101–110

    Article  PubMed  CAS  Google Scholar 

  45. Ribeiro RA, Rogel MA, Lopez-Lopez A, Ormeno-Orrillo E, Gomes Barcellos F, Martinez J, Lopes Thompson F, Martinez-Romero E, Hungria M (2011) Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol In Press

  46. Good IL (1953) The population frequencies of species and the estimation of population parameters. Biometrika 80:193–201

    Google Scholar 

  47. Chao A (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43:783–791

    Article  PubMed  CAS  Google Scholar 

  48. Chao A, Lee S-M (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    Google Scholar 

  49. Magurran AE (1988) Ecological diversity and its measurement. Chapman, London

    Google Scholar 

  50. Chao A, Chazdon RL, Colwell RK, Shen T-J (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  51. Wolfe R, Hanley J (2002) If we're so different, why do we keep overlapping? When 1 plus 1 doesn't make 2. CMAJ 166:65–66

    PubMed  Google Scholar 

  52. Jordan DC (1984) Family III. Rhizobiaceae Conn 1938. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore, pp 234–235

    Google Scholar 

  53. Grossman JM, Sheaffer C, Wyse D, Graham PH (2005) Characterization of slow-growing root nodule bacteria from Inga oerstediana in organic coffee agroecosystems in Chiapas, Mexico. Appl Soil Ecol 29:236–251

    Article  Google Scholar 

  54. Hughes RF, Kauffman JB, Jaramillo VJ (1999) Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology 80:1892–1907

    Google Scholar 

  55. Sprent JI (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25

    Article  PubMed  CAS  Google Scholar 

  56. Sprent J (2005) Nodulated legume trees. In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment, vol 4. Springer, Dordrecht, pp 113–141

    Chapter  Google Scholar 

  57. Sprent J (2001) Nodulation in legumes. Cromwell, Kew

    Google Scholar 

  58. Bongers F, Popma J, del Castillo JM, Carabias J (1998) Structure and floristic composition of the lowland rain forest of Los Tuxtlas, Mexico. Vegetatio 74:55–80

    Article  Google Scholar 

  59. Vázquez-Torres M, Onaindia M (2008) Tree canopy composition in the tropical mountain rain forest of Los Tuxtlas, Mexico. Rev Biol Trop 56:1571–1579

    PubMed  Google Scholar 

  60. Parker MA (2003) Genetic markers for analysing symbiotic relationships and lateral gene transfer in neotropical bradyrhizobia. Mol Ecol 12:2447–2455

    Article  PubMed  CAS  Google Scholar 

  61. Ramirez-Bahena MH, Peix A, Rivas R, Camacho M, Rodriguez-Navarro DN, Mateos PF, Martinez-Molina E, Willems A, Velazquez E (2009) Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. Int J Syst Evol Microbiol 59:1929–1934

    Article  PubMed  Google Scholar 

  62. Parker MA (2003) A widespread neotropical Bradyrhizobium lineage associated with Machaerium and Desmodium (Papilionoideae). Plant Soil 254:263–268

    Article  CAS  Google Scholar 

  63. Menna P, Barcellos FG, Hungria M (2009) Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 59:2934–2950

    Article  PubMed  CAS  Google Scholar 

  64. Steenkamp ET, Stepkowski T, Przymusiak A, Botha WJ, Law IJ (2008) Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48:1131–1144

    Article  PubMed  CAS  Google Scholar 

  65. Wang ET, Rogel MA, Garcia-de los Santos A, Martinez-Romero J, Cevallos MA, Martinez-Romero E (1999) Rhizobium etli bv. mimosae, a novel biovar isolated from Mimosa affinis. Int J Syst Bacteriol 49(Pt 4):1479–1491

    Article  PubMed  CAS  Google Scholar 

  66. Lira-Noriega A, Guevara S, Laborde J, Sánchez-Rios G (2007) Composición florística en potreros de Los Tuxtlas, Veracruz, México. Acta Botánica Mexicana 80:59–87

    Google Scholar 

  67. Gonzalez V, Acosta JL, Santamaria RI, Bustos P, Fernandez JL, Hernandez Gonzalez IL, Diaz R, Flores M, Palacios R, Mora J, Davila G (2010) Conserved symbiotic plasmid DNA sequences in the multireplicon pangenomic structure of Rhizobium etli. Appl Environ Microbiol 76:1604–1614

    Article  PubMed  CAS  Google Scholar 

  68. Ferreira MC, Andrade DS, Chueire LMO, Takemura SM, Hungria M (2000) Tillage method and crop rotation effects on the population sizes and diversity of bradyrhizobia nodulating soybean. Soil Biol Biochem 32:627–637

    Article  CAS  Google Scholar 

  69. Caballero-Mellado J, Martinez-Romero E (1999) Soil fertilization limits the genetic diversity of Rhizobium in bean nodules. Symbiosis 26:111–121

    Google Scholar 

  70. Labes G, Ulrich A, Lentzsch P (1996) Influence of bovine slurry deposition on the structure of nodulating Rhizobium leguminosarum bv. viciae soil populations in a natural habitat. Appl Environ Microbiol 62:1717–1722

    PubMed  CAS  Google Scholar 

  71. Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA (2007) Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci 104:10282–10287

    Article  PubMed  CAS  Google Scholar 

  72. Ramos MLG, Ribeiro WQ (1993) Effect of fungicides on survival of Rhizobium on seeds and the nodulation of bean (Phaseolus vulgaris L.). Plant Soil 152:145–150

    Article  CAS  Google Scholar 

  73. Ormeño-Orrillo E, Rosenblueth M, Luyten E, Vanderleyden J, Martínez-Romero E (2008) Mutations in lipopolysaccharide biosynthetic genes impair maize rhizosphere and root colonization of Rhizobium tropici CIAT899. Environ Microbiol 10:1271–1284

    Article  PubMed  Google Scholar 

  74. Mitchell R, Hester A, Campbell C, Chapman S, Cameron C, Hewison R, Potts J (2010) Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil 333:417–430

    Article  CAS  Google Scholar 

  75. Guevara S, Laborde J, Sánchez-Rios G (2004) Rain forest regeneration beneath the canopy of fig trees isolated in pastures of Los Tuxtlas, Mexico. Biotropica 36:99–108

    Google Scholar 

  76. Purata SE (1986) Floristic and structural changes during old-field succession in the Mexican tropics in relation to site history and species availability. J Trop Ecol 2:257–276

    Article  Google Scholar 

  77. Davidson EA, Reis De Carvalho CJ, Vieira ICG, Figueiredo RDO, Moutinho P, Ishida FY, Dos Santos MTP, Guerrero JB, Kalif K, Saba RT (2004) Nitrogen and phosphorus limitation of biomass growth in a tropical secondary forest. Ecol Appl 14:S150–S163

    Article  Google Scholar 

  78. Gehring C, Vlek PLG, De Souza LAG, Denich M (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric Ecosyst Environ 111:237–252

    Article  CAS  Google Scholar 

  79. Postma J, Hok-A-Hin CH, Van Veen JA (1990) Role of microniches in protecting introduced Rhizobium leguminosarum biovar trifolii against competition and predation in soil. Appl Environ Microbiol 56:495–502

    PubMed  CAS  Google Scholar 

  80. Wang ET, Martínez-Romero J, Martínez-Romero E (1999) Genetic diversity of rhizobia from Leucaena leucocephala nodules in Mexican soils. Mol Ecol 8:711–724

    Article  Google Scholar 

  81. Gutierrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126

    Article  PubMed  CAS  Google Scholar 

  82. Rosenblueth M, Martinez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181:337–344

    Article  PubMed  CAS  Google Scholar 

  83. Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91:415–422

    Article  PubMed  CAS  Google Scholar 

  84. Hernández-Lucas I, Segovia L, Martínez-Romero E, Pueppke SG (1995) Phylogenetic relationships and host range of Rhizobium spp. that nodulate Phaseolus vulgaris L. Appl Environ Microbiol 61:2775–2779

    PubMed  Google Scholar 

  85. Chen WX, Tan ZY, Gao JL, Li Y, Wang ET (1997) Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 47:870–873

    Article  PubMed  CAS  Google Scholar 

  86. Elliott GN, Chen WM, Bontemps C, Chou JH, Young JP, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411

    Article  PubMed  CAS  Google Scholar 

  87. López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J, Ormeño-Orrillo E, Martinez-Romero E (2011) Rhizobium grahamii sp. nov. from Dalea leporina, Leucaena leucocephala, Clitoria ternatea nodules, and Rhizobium mesoamericanum sp. nov. from Phaseolus vulgaris, siratro, cowpea and Mimosa pudica nodules. Int J Syst Evol Microbiol In Press

  88. Estrada A, Cammarano P, Coates-Estrada R (2000) Bird species richness in vegetation fences and in strips of residual rain forest vegetation at Los Tuxtlas, Mexico. Biodivers Conserv 9:1399–1416

    Article  Google Scholar 

  89. Acosta-Durán C, Martínez-Romero E (2002) Diversity of rhizobia from nodules of the leguminous tree Gliricidia sepium, a natural host of Rhizobium tropici. Arch Microbiol 178:161–164

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Michael Dunn for reading the manuscript, to Martín De Los Santos Bailón and Jose A. Garcia Perez for technical assistance, and to Los Tuxtlas farmers for their kind collaboration. Financial support for this project was from GEF-PNUMA-CIAT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Ormeño-Orrillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ormeño-Orrillo, E., Rogel-Hernández, M.A., Lloret, L. et al. Change in Land Use Alters the Diversity and Composition of Bradyrhizobium Communities and Led to the Introduction of Rhizobium etli into the Tropical Rain Forest of Los Tuxtlas (Mexico). Microb Ecol 63, 822–834 (2012). https://doi.org/10.1007/s00248-011-9974-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9974-9

Keywords

Navigation