Skip to main content
Log in

Divergences in the Response to Ultraviolet Radiation Between Polar and Non-Polar Ciliated Protozoa

UV Radiation Effects in Euplotes

  • Notes and Short Communications
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Ultraviolet (UV) radiation has detrimental effects on marine ecosystems, in particular in the polar regions where stratospheric ozone reduction causes higher levels of solar radiation. We analyzed two polar species of Euplotes, Euplotes focardii and Euplotes nobilii, for the sensitivity to UV radiation in comparison with two akin species from mid-latitude and tropical waters. Results showed that they face UV radiation much more efficiently than the non-polar species by adopting alternative strategies that most likely reflect different times of colonization of the polar waters. While E. focardii, which is endemic to the Antarctic, survives for longer exposed to UV radiation, E. nobilii, which inhabits both the Antarctic and Arctic, recovers faster from UV-induced damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  1. Agustí A (2008) The impact of increased ultraviolet radiation on the polar oceans. In: Duarte CM (ed) Impacts of global warming on polar ecosystems. Fundación BBVA, Bilbao, pp 25–45

    Google Scholar 

  2. Balskus EP, Walsh CT (2010) The genetic and molecular basis for sunscreen biosynthesis in cyanobacteria. Science 329:1653–1656

    Article  PubMed  CAS  Google Scholar 

  3. Borror AC, Hill BF (1995) The order Euplotida (Ciliophora): taxonomy, with division of Euplotes into several genera. J Eukaryot Microbiol 42:457–466

    Article  Google Scholar 

  4. Buma AGJ, Boelen P, Jeffrey WH (2003) UVR-induced DNA damage in aquatic organisms. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. The Royal Society of Chemistry, Cambridge, pp 291–327

    Chapter  Google Scholar 

  5. Cervia D, Di Giuseppe G, Ristori C, Martini D, Gambellini G, Bagnoli P, Dini F (2009) The secondary metabolite euplotin C induces apoptosis-like death in the marine ciliated protist Euplotes vannus. J Euk Microbiol 56:263–269

    Article  PubMed  CAS  Google Scholar 

  6. Dahlback A (2002) Recent changes in surface solar ultraviolet radiation and stratospheric ozone at high Arctic site. In: Hessen D (ed) UV radiation and Arctic ecosystems. Springer, Berlin, pp 3–22

    Chapter  Google Scholar 

  7. Dahms HU, Lee JS (2010) UV radiation in the marine ectotherms: molecular effects and responses. Aquat Toxicol 97:3–14

    Article  PubMed  CAS  Google Scholar 

  8. Davidson AT (2006) Effects of ultraviolet radiation on microalgal growth, survival and production. In: Rao SVS (ed) Algal cultures, analogues of blooms and applications. Science Publishers, Enfield, pp 715–767

    Google Scholar 

  9. Davidson AT, Belbin L (2002) Exposure of natural Antarctic marine microbial assemblages to ambient UV radiation: effects on the marine microbial community. Aquat Microb Ecol 27:159–174

    Article  Google Scholar 

  10. Di Giuseppe G, Erra F, Dini F, Alimenti C, Vallesi A, Pedrini B, Wüthrich K, Luporini P (2011) Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell-cell signaling and cross-mating. Proc Natl Acad Sci U S A 108:3181–3186

    Article  PubMed  Google Scholar 

  11. Foyo-Moreno I, Vida J, Alados-Arboledas L (1998) Ground based ultraviolet (290–385 nm) and broadband solar radiation measurements in south-eastern Spain. Int J Climatol 18:1389–1400

    Article  Google Scholar 

  12. Frederick JE, Lubin D (1994) Solar ultraviolet irradiance at Palmer Station, Antarctica. In: Weiler CS, Penhale PA (eds) Ultraviolet radiation in Antarctica: measurements and biological effects. American Geophysical Union Antarctic Research Series, vol. 62. American Geophysical Union, Washington, pp 43–52

  13. Häder DP, Sinha RP (2005) Solar ultraviolet radiation-induced DNA damage in aquatic organisms: potential environmental impact. Mut Res 571:221–233

    Article  Google Scholar 

  14. Jiang J, Zhang Q, Warren A, Al-Rasheid KAS, Song S (2010) Morphology and SSU rRNA gene-based phylogeny of two marine Euplotes species, E. orientalis spec. nov. and E. raikovi Agamaliev, 1966 (Ciliophora, Euplotida). Eur J Protistol 46:121–132

    Article  PubMed  Google Scholar 

  15. Jones AE, Shanklin JD (1995) Continued decline of ozone over Halley, Antarctica, since 1985. Nature 376:409–411

    Article  CAS  Google Scholar 

  16. Kerr RA (1998) Deep chill triggers record ozone hole. Science 282:391

    Article  CAS  Google Scholar 

  17. Kim RO, Rhee JS, Won EJ, Lee KW, Kang CM, Lee YM, Lee JS (2011) Ultraviolet B retards growth, induces oxidative stress, and modulates DNA repair-related gene and heat-shock protein gene expression in the monogonont rotifer, Brachionus sp. Aquat Toxicol 10:529–539

    Article  Google Scholar 

  18. Klisch M, Häder DP (2008) Mycosporine-like amino acids and marine toxins—the common and the different. Mar Drugs 6:147–163

    Article  PubMed  CAS  Google Scholar 

  19. La Terza A, Papa G, Miceli C, Luporini P (2001) Divergence between two Antarctic species of the ciliate Euplotes, E. focardii and E. nobilii, in the expression of heat-shock protein 70 genes. Mol Ecol 10:1061–1067

    Article  PubMed  Google Scholar 

  20. Lee JJ, Soldo AT, Reisser W, Lee MJ, Jeon KW, Görtz HD (1985) The extent of algal and bacterial endosymbioses in Protozoa. J Eukaryot Microbiol 32:391–403

    Article  CAS  Google Scholar 

  21. Lister KN, Lamare MD, Burritt DJ (2010) Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation. J Exp Biol 213:1967–1975

    Article  PubMed  CAS  Google Scholar 

  22. Llabrés M, Agustí S (2010) Effects of ultraviolet radiation on growth, cell death and the standing stock of Antarctic phytoplankton. Aquat Microb Ecol 59:151–160

    Article  Google Scholar 

  23. Macaluso AL, Mitchell DL, Sanders RW (2009) Direct effects of UV-B radiation on the freshwater heterotrophic nanoflagellate Paraphysomonas sp. Appl Environ Microbiol 75:4525–4530

    Article  PubMed  CAS  Google Scholar 

  24. Martínez R (2007) Effects of ultraviolet radiation on protein content, respiratory electron transport system (ETS) activity and superoxide dismutase (SOD) activity of Antarctic plankton. Polar Biol 30:1159–1172

    Article  Google Scholar 

  25. Petz W (2005) Ciliates. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 347–448

    Google Scholar 

  26. Petz W, Valbonesi A, Schiftner U, Quesada A, Cynan Ellis-Evans J (2007) Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species? FEMS Microbiol Ecol 59:396–408

    Article  PubMed  CAS  Google Scholar 

  27. Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW (2006) Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. Eukaryot Cell 5:1517–1531

    Article  PubMed  CAS  Google Scholar 

  28. Sanders RW, Macaluso AL, Sardina TJ, Mitchell DL (2005) Photoreactivation in two freshwater ciliates: differential responses to variations in UV-B flux and temperature. Aquat Microb Ecol 40:283–292

    Article  Google Scholar 

  29. Sinha RP, Häder DP (2002) Life under solar UV radiation in aquatic organisms. Adv Space Res 30:1547–1556

    Article  PubMed  CAS  Google Scholar 

  30. Sommaruga R, Buma AGJ (2000) UV-induced cell damage is species-specific among aquatic phagotrophic protists. J Eukaryot Microbiol 47:450–455

    Article  PubMed  CAS  Google Scholar 

  31. Sommaruga R, Whitehead K, Shick JM, Lobban CS (2006) Mycosporine-like amino acids in the Zooxanthella-ciliate symbiosis Maristentor dinoferus. Protist 157:185–191

    Article  PubMed  CAS  Google Scholar 

  32. Sonntag B, Summerer M, Sommaruga R (2007) Sources of mycosporine-like amino acids in planktonic Chlorella-bearing ciliates (Ciliophora). Freshwat Biol 52:1476–1485

    Article  CAS  Google Scholar 

  33. Sonntag B, Summerer M, Sommaruga R (2011) Are freshwater mixotrophic ciliates less sensitive to solar ultraviolet radiation than heterotrophic ones? J Eukaryot Microbiol 58:196–202

    Article  PubMed  Google Scholar 

  34. Thomson PG, Davidson AT, Cadman N (2008) Temporal changes in effects of ambient UV radiation on natural communities of Antarctic marine protists. Aquat Microb Ecol 52:131–147

    Article  Google Scholar 

  35. Valbonesi A, Luporini P (1990) Description of two new species of Euplotes and Euplotes rariseta from Antarctica. Polar Biol 11:47–53

    Article  Google Scholar 

  36. Valbonesi A, Luporini P (1993) Biology of Euplotes focardii, an Antarctic ciliate. Polar Biol 13:489–493

    Article  Google Scholar 

  37. Vallesi A, Di Giuseppe G, Dini F, Luporini P (2008) Pheromone evolution in the protozoan ciliate Euplotes: the ability to synthesize diffusible forms is ancestral and secondarily lost. Mol Phylogenet Evol 47:439–442

    Article  PubMed  CAS  Google Scholar 

  38. Vincent WF, Neale PJ (2000) Mechanisms of UV damage to aquatic organisms. In: de Mora S, Demers S, Vernet M (eds) The effects of UV radiation in the marine environment. Cambridge University, Cambridge, pp 149–176

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. F. Dini and P. Luporini for providing the ciliate cultures and advice for the manuscript preparation, Dr. F. Frontini for helpful technical assistance, Dr. M.B. Dunbar for English language revision, and three anonymous reviewers for improving the original manuscript with helpful suggestions and constructive criticisms. Financial support was provided by the “Programma Nazionale di Ricerche in Antartide” (PNRA) and the project (to G. D. G.) “BIOlogical responses to CLIMAte change: from genes to ecological communities (BIOCLIMA).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Vallesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Giuseppe, G., Cervia, D. & Vallesi, A. Divergences in the Response to Ultraviolet Radiation Between Polar and Non-Polar Ciliated Protozoa. Microb Ecol 63, 334–338 (2012). https://doi.org/10.1007/s00248-011-9934-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9934-4

Keywords

Navigation