Skip to main content
Log in

Efficacy of Zosteric Acid Sodium Salt on the Yeast Biofilm Model Candida albicans

  • ENVIRONMENTAL MICROBIOLOGY
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Candida albicans is the most notorious and the most widely studied yeast biofilm former. Design of experiments (DoE) showed that 10 mg/L zosteric acid sodium salt reduced C. albicans adhesion and the subsequent biofilm formation by at least 70%, on both hydrophilic and hydrophobic surfaces of 96-well plates. Indeed, biofilm imaging revealed the dramatic impact of zosteric acid sodium salt on biofilm thickness and morphology, due to the inability of the cells to form filamentous structures while remaining metabolically active. In the same way, 10 mg/L zosteric acid sodium salt inhibited C. albicans biofilm formation when added after the adhesion phase. Contrary to zosteric acid sodium salt, methyl zosterate did not affect yeast biofilm. In addition, zosteric acid sodium salt enhanced sensitivity to chlorhexidine, chlorine, hydrogen peroxide, and cis-2-decenoic acid, with a reduction of 0.5 to 8 log units. Preliminary in vitro studies using suitable primary cell based models revealed that zosteric acid sodium salt did not compromise the cellular activity, adhesion, proliferation or morphology of either the murine fibroblast line L929 or the human osteosarcoma line MG-63. Thus the use of zosteric acid sodium salt could provide a suitable, innovative, preventive, and integrative approach to preventing yeast biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Alem MA, Oteef MD, Flowers TH, Douglas LJ (2006) Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. Eukaryot Cell 5:1770–1779

    Article  PubMed  CAS  Google Scholar 

  2. Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A (2004) Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun 72:6023–6031

    Article  PubMed  CAS  Google Scholar 

  3. Arnaud MB, Costanzo MC, Shah P, Skrzypek MS, Sherlock G (2009) Gene ontology and the annotation of pathogen genomes: the case of Candida albicans. Trends Microbiol 17:295–303

    Article  PubMed  CAS  Google Scholar 

  4. Banerjee M, Thompson DS, Lazzell A, Carlisle PL, Pierce C, Monteagudo C, López-Ribot JL, Kadosh (2008) UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell 19:1354–1365

    Article  PubMed  CAS  Google Scholar 

  5. Barrios CA, Xu Q, Cutright T, Newby BZ (2005) Incorporating zosteric acid into silicone coatings to achieve its slow release while reducing fresh water bacterial attachment. Colloids Surf B Biointerfaces 41:83–93

    Article  PubMed  CAS  Google Scholar 

  6. Brugnoni LI, Lozano JE, Cubitto MA (2007) Potential of yeast isolated from apple juice to adhere to stainless steel surfaces in the apple juice processing industry. Food Res Int 40:332–340

    Article  CAS  Google Scholar 

  7. Callow ME, Callow JA (1998) Attachment of zoospores of the fouling alga Enteromorpha in the presence of zosteric acid. Biofouling 13:87–95

    Article  CAS  Google Scholar 

  8. Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24:350–354

    Article  PubMed  CAS  Google Scholar 

  9. Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    Article  PubMed  CAS  Google Scholar 

  10. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394

    Article  PubMed  CAS  Google Scholar 

  11. Chandra J, McCormick TS, Imamura Y, Mukherjee PK, Ghannoum MA (2007) Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 75:2612–2620

    Article  PubMed  CAS  Google Scholar 

  12. Chiesa R, Giavaresi G, Fini M, Sandrini E, Giordano C, Bianchi A, Giardino R (2007) In vitro and in vivo performance of a novel surface treatment to enhance osseointegration of endosseous implants. Oral Surg Oral Med O 103:745–756

    Google Scholar 

  13. Cottier F, Mühlschlegel FA (2009) Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol Lett 295:1–9

    Article  PubMed  CAS  Google Scholar 

  14. da Silveira LC, Charone S, Maia LC, Soares RMA, Portela MB (2009) Biofilm formation by Candida species on silicone surfaces and latex pacifier nipples: an in vitro study. J Clin Pediatr Dent 33:235–240

    PubMed  Google Scholar 

  15. Davies DG, Marques CN (2009) A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol 191:1393–1403

    Article  PubMed  CAS  Google Scholar 

  16. Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7

    Article  PubMed  CAS  Google Scholar 

  17. Del Curto B, Brunella MF, Giordano C, Pedeferri MP, Valtulina V, Visai L, Cigada A (2005) Decreased bacterial adhesion to surface-treated titanium. Int J Artif Organs 28:716–730

    Google Scholar 

  18. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36

    Article  PubMed  CAS  Google Scholar 

  19. Flemming HC (2005) Alternative and conventional anti-fouling strategies. Int Biodeterior Biodegrad 56:121–134

    Article  Google Scholar 

  20. Fonzi WA, Irwin MY (1993) Isogenic strain construction and gene mapping in Candida albicans. Genetics 134:717–728

    PubMed  CAS  Google Scholar 

  21. Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63:4846–4872

    Article  CAS  Google Scholar 

  22. Gantner BN, Simmons RM, Underhill DM (2005) Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J 24:1277–1286

    Article  PubMed  CAS  Google Scholar 

  23. Giordano C, Sandrini E, Del Curto B, Signorelli E, Di Silvio L (2004) Titanium for osteointegration: comparison between a novel biomimetic treatment and commercially exploited surfaces. J Appl Biomater Biomech 2:35–44

    PubMed  CAS  Google Scholar 

  24. Harding MW, Marques LLR, Howard RJ, Olson ME (2009) Can filamentous fungi form biofilms? Trends Microbiol 17:475–480

    Article  PubMed  CAS  Google Scholar 

  25. Heinsbroek SEM, Taylor PR, Martinez FO, Martinez-Pomares L, Brown GD, Gordon S (2008) Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis. PLoS Pathog 4 (11)

  26. Honraet K, Goetghebeur E, Nelis HJ (2005) Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Meth 63:287–295

    Article  CAS  Google Scholar 

  27. Jagani S, Chelikani R, Kim D-S (2009) Effects of phenol and natural phenolic compounds on biofilm formation by Pseudomonas aeruginosa. Biofouling 25:321–324

    Article  PubMed  CAS  Google Scholar 

  28. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, Newport G, Thorstenson YR, Agabian N, Magee PT, Davis RW, Scherer S (2004) The diploid genome sequence of Candida albicans. PNAS 101:7329–7334

    Article  PubMed  CAS  Google Scholar 

  29. Lewis RE, Lo HJ, Raad II, Kontoyiannis DP (2002) Lack of catheter infection by the efg1/efg1 cph1/cph1 double-null mutant, a Candida albicans strain that is defective in filamentous growth. Antimicrob Agents Chemother 46:1244–1248

    Google Scholar 

  30. Limjindaporn T, Khalaf RA, Fonzi WA (2003) Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol 50:993–1004

    Article  PubMed  CAS  Google Scholar 

  31. Martchenko M, Alarco AM, Harcus D, Whiteway M (2004) Superoxide dismutases in Candida albicans: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell 15:456–467

    Article  PubMed  CAS  Google Scholar 

  32. Nailis H, Vandenbroucke R, Tilleman K, Deforce D, Nelis H, Coenye T (2009) Monitoring ALS1 and ALS3 gene expression during in vitro Candida albicans biofilm formation under continuous flow conditions. Mycopathologia 167:9–17

    Article  PubMed  CAS  Google Scholar 

  33. Olsson IM, Johansson E, Berntsson M, Eriksson L, Gottfries J, Wold S (2006) Rational DOE protocols for 96-well plates. Chemometr Intell Lab 83:66–74

    Article  CAS  Google Scholar 

  34. Percec V, Peterca M, Sienkowska MJ, Ilies MA, Aqad E, Smidrkal J, Heiney PA (2006) Synthesis and retrostructural analysis of libraries of ab3 and constitutional isomeric ab2 phenylpropyl ether-based supramolecular dendrimers. J Am Chem Soc 128:3324–3334

    Article  PubMed  CAS  Google Scholar 

  35. Principi P, Villa F, Sorlini C, Cappitelli F (2010) Molecular studies of microbial community structure on stained pages of Leonardo da Vinci's Atlantic Codex. Microb Ecol. doi:10.1007/s00248-010-9741-3

    Google Scholar 

  36. Qian P-Y, Xu Y, Fusetani N (2010) Natural products as antifouling compounds: recent progress and future perspectives. Biofouling 26:223–234

    Article  PubMed  CAS  Google Scholar 

  37. Ramage G, Wickes BL, López-Ribot JL (2007) Inhibition on Candida albicans biofilm formation using divalent cation chelators (EDTA). Mycopathologia 164:301–306

    Article  PubMed  Google Scholar 

  38. Sellam A, Thamir Al-Niemi, McInnerney K, Brumfield S, Nantel A, Suci PA (2009) A Candida albicans early stage biofilm detachment event in rich medium. BMC Microbiol 9:25–25

    Article  PubMed  Google Scholar 

  39. Stanley MS, Callow ME, Perry R, Alberte RS, Smith R, Callow JA (2002) Inhibition of fungal spore adhesion by zosteric acid as the basis for a novel, non-toxic crop protection technology. Phytopatol 92:378–383

    Article  CAS  Google Scholar 

  40. Stokes C, Moran GP, Spiering MJ, Cole GT, Coleman DC, Sullivan DJ (2007) Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Fungal Genet Biol 44:920–931

    Article  PubMed  CAS  Google Scholar 

  41. Suci PA, Tyler BJ (2002) Action of chlorhexidine digluconate against yeast and filamentous forms in an early-stage Candida albicans biofilm. Antimicrob Agents Chemother 46:3522–3531

    Article  PubMed  CAS  Google Scholar 

  42. Thewes S, Moran GP, Magee BB, Schaller M, Sullivan DJ, Hube B (2008) Phenotypic screening, transcriptional profiling, and comparative genomic analysis of an invasive and non-invasive strain of Candida albicans. BMC Microbiol 8:187

    Article  PubMed  Google Scholar 

  43. Todd JS, Zimmerman RC, Crews P, Alberte RS (1993) The antifouling activity of natural and synthetic phenol acid sulphate esters. Phytochemistry 34:401–404

    Article  CAS  Google Scholar 

  44. Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL (2010) Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog 6:e1000828

    Article  PubMed  Google Scholar 

  45. Van Dijck P, De Rop L, Szlufcik K, Van Ael E, Thevelein JM (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 70:1772–1782

    Article  PubMed  Google Scholar 

  46. Verstrepen KJ, Klis FM (2006) Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60:5–15

    Article  PubMed  CAS  Google Scholar 

  47. Villa F, Albanese D, Giussani B, Stewart PS, Daffonchio D, Cappitelli F (2010) Hindering biofilm formation with zosteric acid. Biofouling 26:739–752

    Article  PubMed  CAS  Google Scholar 

  48. Vogel C, Rogerson A, Schatz S, Laubach H, Tallman A, Fell J (2007) Prevalence of yeasts in beach sand at three bathing beaches in South Florida. Water Res 41:1915–1920

    Article  PubMed  CAS  Google Scholar 

  49. Watamoto T, Samaranayake LP, Jayatilake JAMS, Egusa H, Yatani H, Seneviratne CJ (2009) Effect of filamentation and mode of growth on antifungal susceptibility of Candida albicans. Int J Antimicrob Agents 34:333–339

    Article  PubMed  CAS  Google Scholar 

  50. Wheeler RT, Kombe D, Agarwala SD, Fink GR (2008) Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog 4(12).

  51. Xu Q, Barrios CA, Cutright T, Newby BZ (2005) Assessment of antifouling effectiveness of two natural product antifoulants by attachment study with freshwater bacteria. Environ Sci Pollut Res 12:278–284

    Article  CAS  Google Scholar 

  52. Zhu W, Filler SG (2010) Interactions of Candida albicans with epithelial cells. Cell Microbiol 12:273–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Cappitelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villa, F., Pitts, B., Stewart, P.S. et al. Efficacy of Zosteric Acid Sodium Salt on the Yeast Biofilm Model Candida albicans . Microb Ecol 62, 584–598 (2011). https://doi.org/10.1007/s00248-011-9876-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9876-x

Keywords

Navigation