Skip to main content

Advertisement

Log in

Placing the Effects of Leaf Litter Diversity on Saprotrophic Microorganisms in the Context of Leaf Type and Habitat

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Because of conflicting results in previous studies, it is unclear whether litter diversity has a predictable impact on microbial communities or ecosystem processes. We examined whether effects of litter diversity depend on factors that could confound comparisons among previous studies, including leaf type, habitat type, identity of other leaves in the mixture, and spatial covariance at two scales within habitats. We also examined how litter diversity affects the saprotrophic microbial community using terminal restriction fragment length polymorphism to profile bacterial and fungal community composition, direct microscopy to quantify bacterial biomass, and ergosterol extraction to quantify fungal biomass. We found that leaf mixture diversity was rarely significant as a main effect (only for fungal biomass), but was often significant as an interaction with leaf type (for ash-free dry mass recovered, carbon-to-nitrogen ratio, fungal biomass, and bacterial community composition). Leaf type and habitat were significant as main effects for all response variables. The majority of variance in leaf ash-free dry mass and C/N ratio was explained after accounting for treatment effects and spatial covariation at the meter (block) and centimeter (litterbag) scales. However, a substantial amount of variability in microbial communities was left unexplained and must be driven by factors at other spatial scales or more complex spatiotemporal dynamics. We conclude that litter diversity effects are primarily dependent on leaf type, rather than habitat type or identity of surrounding leaves, which can guide the search for mechanisms underlying effects of litter diversity on ecosystem processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Anderson MJ (2006) Distance-based tests for homogeneity of multivariate dispersions. Biometrics 62:245–253

    Article  PubMed  Google Scholar 

  2. Ball BA, Hunter MD, Kominoski JS, Swan CM, Bradford MA (2008) Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects. J Ecol 96:303–313

    Article  Google Scholar 

  3. Berg B, McClaugherty C (2003) Plant litter: decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  4. Blackwood CB, Oaks A, Buyer JS (2005) Phylum- and class-specific PCR primers for general microbial community analysis. Appl Environ Microb 71:6193–6198

    Article  CAS  Google Scholar 

  5. Boddy L, Hynes J, Bebber DP, Fricker MD (2009) Saprotrophic cord systems: dispersal mechanisms in space and time. Mycoscience 50:9–19

    Article  Google Scholar 

  6. Briones MJI, Ineson P (1996) Decomposition of eucalyptus leaves in litter mixtures. Soil Biol Biochem 28:1381–1388

    Article  CAS  Google Scholar 

  7. Cardinale BJ, Nelson K, Palmer MA (2000) Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91:175–183

    Article  Google Scholar 

  8. Cox P, Wilkinson SP, Anderson JM (2001) Effects of fungal inocula on the decomposition of lignin and structural polysaccharides in Pinus sylvestris litter. Biol Fertil Soils 33:246–251

    Article  CAS  Google Scholar 

  9. Feinstein LM, Sul WJ, Blackwood CB (2009) Assessment of bias associated with incomplete extraction of microbial DNA from soil. Appl Environ Microbiol 75:5428–5433

    Article  CAS  PubMed  Google Scholar 

  10. Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl Environ Microb 73:7059–7066

    Article  CAS  Google Scholar 

  11. Frey SD, Six J, Elliott ET (2003) Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil–litter interface. Soil Biol Biochem 35:1001–1004

    Article  CAS  Google Scholar 

  12. Fyles JW, Fyles IH (1993) Interaction of Douglas-fir with red alder and salal foliage litter during decomposition. Can J For Res 23:358–361

    Article  Google Scholar 

  13. Gartner TB, Cardon ZG (2004) Decomposition dynamics in mixed-species leaf litter. Oikos 104:230–246

    Article  Google Scholar 

  14. Gessner MO, Chauvet E (1993) Ergosterol-to-biomass conversion factors for aquatic hyphomycetes. Appl Environ Microb 59:502–507

    CAS  Google Scholar 

  15. Green JL, Bohannan BJM, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320:1039–1043

    Article  CAS  PubMed  Google Scholar 

  16. Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–750

    Article  CAS  PubMed  Google Scholar 

  17. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol S 36:191–218

    Article  Google Scholar 

  18. Hooper DU, Chapin FA, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  19. Hui D, Jackson RB (2009) Assessing interactive responses in litter decomposition in mixed species litter. Plant Soil 314:263–271

    Article  CAS  Google Scholar 

  20. Koide K, Osono T, Takeda H (2005) Fungal succession and decomposition of Camellia japonica leaf litter. Ecol Res 20:599–609

    Article  Google Scholar 

  21. Lecerf A, Risnoveanu G, Popescu C, Gessner MO, Chauvet E (2007) Decomposition of diverse litter mixtures in streams. Ecology 88:219–227

    Article  PubMed  Google Scholar 

  22. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24

    Article  Google Scholar 

  23. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  24. Liu J, Dazzo FB, Glagoleva O, Yu B, Jain AK (2001) CMEIAS: a computer-aided system for the image analysis of bacterial morphotypes in microbial communities. Microb Ecol 41:173–194

    PubMed  Google Scholar 

  25. Loferer-Kröβbacher M, Kilma J, Psenner R (1998) Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microb 64:688–694

    Google Scholar 

  26. Loreau M, Naeem S, Inchausti P, Grime JP, Hector A, Hooper DU, Huston MA, Faffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  CAS  PubMed  Google Scholar 

  27. Madritch DM, Cardinale BJ (2007) Impacts of tree species diversity on litter decomposition in northern temperate forests of Wisconsin, USA: a multi-site experiment along a latitudinal gradient. Plant Soil 292:147–159

    Article  CAS  Google Scholar 

  28. Martin KJ, Rygiewicz PT (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental samples. BMC Microbiol 5:28

    Article  PubMed  Google Scholar 

  29. Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Øvreås L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  CAS  PubMed  Google Scholar 

  30. McArthur JV, Aho JM, Rader RB (1994) Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. J N Am Benthol Soc 13:57–67

    Article  Google Scholar 

  31. McNamara C, Leff L (2004) Bacterial community composition in biofilms on decomposing leaves in a Northeast Ohio stream. J N Am Benthol Soc 23:677–685

    Article  Google Scholar 

  32. McTiernan KB, Ineson P, Coward PA (1997) Respiration and nutrient release from tree leaf litter mixtures. Oikos 78:527–538

    Article  Google Scholar 

  33. Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  CAS  Google Scholar 

  34. Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  35. Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species–area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480

    Article  PubMed  Google Scholar 

  36. Poll C, Ingwerson J, Stemmer M, Gerzabek MH, Kandeler E (2006) Mechanisms of solute transport affect abundance and function of soil microorganisms in the detritusphere. Eur J Soil Sci 57:583–595

    Article  Google Scholar 

  37. Porter KS, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  38. Salamanca EF, Kaneko N, Katagiri S (1998) Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods. Ecol Eng 10:53–73

    Article  Google Scholar 

  39. SAS Institute Inc (2004) SAS/Stat user’s guide. SAS OnlineDoc 9.1.2 SAS Institute Inc., Cary, NC, USA

  40. Schindler MH, Gessner MO (2009) Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641–1649

    Article  PubMed  Google Scholar 

  41. Schwendener CM, Lehman J, de Camargo PB, Luizão RCC, Fernandes ECM (2005) Nitrogen transfer between high- and low-quality leaves on a nutrient-poor Oxisol determined by 15N enrichment. Soil Biol Biochem 37:787–794

    Article  CAS  Google Scholar 

  42. Snyder RE, Chesson P (2004) How the spatial scales of dispersal, competition, and environmental heterogeneity interact to affect coexistence. Am Nat 164:633–650

    Article  PubMed  Google Scholar 

  43. Tank JL, Webster JR (1998) Interaction of substrate and nutrient availability on wood biofilm processes in streams. Ecology 79:151–162

    Article  Google Scholar 

  44. Tiunov AV (2009) Particle size alters litter diversity effects on decomposition. Soil Biol Biochem 41:176–178

    Article  CAS  Google Scholar 

  45. Thies J (2007) Soil microbial community analysis using terminal restriction fragment length polymorphisms. Soil Sci Soc Am J 71:579–591

    Article  CAS  Google Scholar 

  46. Toberman H, Freeman C, Evans C, Fenner N, Artz RRE (2008) Summer drought decreases soil fungal diversity and associated phenol oxidase activity in upland Calluna heathland soil. FEMS Microbiol Ecol 66:426–436

    Article  CAS  PubMed  Google Scholar 

  47. Triantis KA, Mylonas M, Lika K, Vardinoyannis K (2003) A model for the species–area–habitat relationship. J Biogeogr 30:19–27

    Article  Google Scholar 

  48. Wardle DA (2006) The influence of biotic interactions on soil biodiversity. Ecol Lett 9:870–886

    Article  PubMed  Google Scholar 

  49. Wardle DA, Nilsson M, Zackrisson O, Gallet C (2003) Determinants of litter mixing effects in a Swedish boreal forest. Soil Biol Biochem 35:827–835

    Article  CAS  Google Scholar 

  50. Woodcock S, Curtis TP, Head IM, Lunn M, Sloan WT (2006) Taxa–area relationships for microbes: the unsampled and the unseen. Ecol Lett 9:805–812

    Article  PubMed  Google Scholar 

  51. Wu L, Blackwood CB, Leff LG (2009) Effect of single-species and mixed-species leaf leachate on bacterial communities in biofilms. Hydrobiologia 636:65–76

    Article  CAS  Google Scholar 

  52. Zak DR, Blackwood CB, Waldrop MP (2006) A molecular dawn for biogeochemistry. Trends Ecol Evol 21:288–295

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

L. Wu was supported by the Chinese scholarship fund (2006A62008). We thank all the Kent State students and faculty who lent a hand with leaf processing on our “big” harvest days. We also thank Dr. Kurt Smemo, Holden Arboretum, for conducting carbon and nitrogen analyses, Dr. Ksenia Namjesnik-Dejanovic and Kent’s Department of Geology for use of their HPLC, and Dr. Robert Heath for use of his microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher B. Blackwood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, L., Feinstein, L.M., Valverde-Barrantes, O. et al. Placing the Effects of Leaf Litter Diversity on Saprotrophic Microorganisms in the Context of Leaf Type and Habitat. Microb Ecol 61, 399–409 (2011). https://doi.org/10.1007/s00248-010-9760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9760-0

Keywords

Navigation