Skip to main content

Advertisement

Log in

Bacterial Community Composition in Brazilian Anthrosols and Adjacent Soils Characterized Using Culturing and Molecular Identification

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial community composition was examined in two soil types, Anthrosols and adjacent soils, sampled from three locations in the Brazilian Amazon. The Anthrosols, also known as Amazonian dark earths, are highly fertile soils that are a legacy of pre-Columbian settlement. Both Anthrosols and adjacent soils are derived from the same parent material and subject to the same environmental conditions, including rainfall and temperature; however, the Anthrosols contain high levels of charcoal-like black carbon from which they derive their dark color. The Anthrosols typically have higher cation exchange capacity, higher pH, and higher phosphorus and calcium contents. We used culture media prepared from soil extracts to isolate bacteria unique to the two soil types and then sequenced their 16S rRNA genes to determine their phylogenetic placement. Higher numbers of culturable bacteria, by over two orders of magnitude at the deepest sampling depths, were counted in the Anthrosols. Sequences of bacteria isolated on soil extract media yielded five possible new bacterial families. Also, a higher number of families in the bacteria were represented by isolates from the deeper soil depths in the Anthrosols. Higher bacterial populations and a greater diversity of isolates were found in all of the Anthrosols, to a depth of up to 1 m, compared to adjacent soils located within 50–500 m of their associated Anthrosols. Compared to standard culture media, soil extract media revealed diverse soil microbial populations adapted to the unique biochemistry and physiological ecology of these Anthrosols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Akasaka H, Izawa T, Ueki K, Ueki A (2003) Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol Ecol 43:149–161

    Article  CAS  PubMed  Google Scholar 

  2. Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  PubMed  CAS  Google Scholar 

  3. Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20:171–181

    Article  Google Scholar 

  4. Bohannan BJM, Hughes J (2003) New approaches to analyzing microbial biodiversity data. Curr Opin Microbiol 6:282–287

    Article  PubMed  CAS  Google Scholar 

  5. Borneman J, Triplett EW (1997) Molecular microbial diversity in soils from eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653

    PubMed  CAS  Google Scholar 

  6. Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ Microbiol 5:441–452

    Article  PubMed  Google Scholar 

  7. Buckley DH, Schmidt TM (2001) The structure of microbial communities in soil and the lasting impact of cultivation. Microb Ecol 42:11–21

    PubMed  CAS  Google Scholar 

  8. Burlage RS, Atlas R, Stahl D, Geesey G, Sayler G (eds) (1998) Techniques in microbial ecology. Oxford University Press, New York, NY

  9. Chidumayo EN (1994) Effects of wood carbonization on soil and initial development of seedlings in Miombo woodland, Zambia. For Ecol Manag 70:353–357

    Article  Google Scholar 

  10. Cole J, Chai B, Marsh T, Farris R, Wang Q, Kulam S, Chandra S, McGarrell D, Schmidt T, Garrity G, Tiedje J (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31:442–443

    Article  PubMed  CAS  Google Scholar 

  11. Crawford JW, Harris JA, Ritz K, Young IM (2005) Towards an evolutionary ecology of life in soil. Trends Ecol Evol 20:81–87

    Article  PubMed  Google Scholar 

  12. Dalevi D, Hugenholtz P, Blackall LL (2001) A multiple-outgroup approach to resolving division-level phylogenetic relationships using 16S rDNA data. Int J Syst Evol Microbiol 51:385–391

    PubMed  CAS  Google Scholar 

  13. DeLuca TH, MacKenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa Pine forests. Soil Sci Soc Am J 70:448–453

    Article  CAS  Google Scholar 

  14. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  15. Ferrari BC, Binnerup SJ, Gillings M (2005) Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol 71:8714–8720

    Article  PubMed  CAS  Google Scholar 

  16. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364

    Article  PubMed  Google Scholar 

  17. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  PubMed  CAS  Google Scholar 

  18. Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377

    Article  Google Scholar 

  19. Fries M, Zhou J, Cheesanford J, Tiedje J (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60:2802–2810

    PubMed  CAS  Google Scholar 

  20. Glaser B, Guggenberger G, Zech W, Ruivo M (2003) Soil organic matter stability in Amazonian dark earths. In: Lehmann J, Kern D, Glaser B, Woods W (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, The Netherlands, pp 141–158

    Google Scholar 

  21. Horner-Devine M, Carney K, Bohannan B (2004) An ecological perspective on bacterial biodiversity. Proc R Soc Lond B Biol Sci 271:113–122

    Article  Google Scholar 

  22. Kim J-S, Sparovek G, Longo RM, De Melo WJ, Crowley D (2007) Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biol Biochem 39:684–690

    Article  CAS  Google Scholar 

  23. Labeda D (ed) (1990) Isolation of biotechnological organisms from nature. McGraw-Hill, New York, NY

    Google Scholar 

  24. Leadbetter JR (2003) Cultivation of recalcitrant microbes: cells are alive, well and revealing their secrets in the 21st century laboratory. Curr Opin Microbiol 6:274–281

    Article  PubMed  CAS  Google Scholar 

  25. Lehmann J, Liang B, Solomon D, Lerotic M, Luizao F, Kinyangi J, Schafer T, Wirick S, Jacobsen C (2005) Near-edge X-ray absorptive fine structure (NEXAFS) spectroscopy for mapping nano-scale distributions of organic carbon forms in soil: application to black carbon particles. Glob Biogeochem Cycles 19:1–12

    Google Scholar 

  26. Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O'Neill B, Skjemstad JO, Thies J, Luizao FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70:1719–1730

    Article  CAS  Google Scholar 

  27. Metcalfe AC, Krsek M, Gooday GW, Prosser JI, Wellington EMH (2002) Molecular analysis of a bacterial chitinolytic community in an upland pasture. Appl Environ Microbiol 68:5042–5050

    Article  PubMed  CAS  Google Scholar 

  28. Moeseneder M, Arrieta J, Gerard M, Christian W, Herndl G (1999) Optimization of terminal-restriction fragment length polymorphism analysis for complex marine bacterioplankton communities and comparison with denaturing gradient gel electrophoresis. Appl Environ Microbiol 65:3518–3525

    PubMed  CAS  Google Scholar 

  29. Neves EG, Petersen J, Bartone R, de Silva C (2003) Historical and socio-cultural origins of Amazonian dark earths. In: Lehmann J, Kern D, Glaser B, Woods W (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, The Netherlands, pp 29–50

    Google Scholar 

  30. Pietikainen J, Kiikkila O, Fritze H (2000) Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89:231–242

    Article  CAS  Google Scholar 

  31. Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    PubMed  CAS  Google Scholar 

  32. Rondon M, Lehmann J, Ramírez J, Hurtado M (2007) Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with bio-char additions. Biol Fertil Soils 43:699–708

    Article  Google Scholar 

  33. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666

    Article  PubMed  CAS  Google Scholar 

  34. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  35. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed  CAS  Google Scholar 

  36. Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    Article  PubMed  CAS  Google Scholar 

  37. Sombroek W, Ruivo ML, Fearnside PM, Glaser B, Lehmann J (2003) Amazonian dark earths as carbon stores and sinks. In: Lehmann J, Kern DC, Glaser B, Woods WI (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, The Netherlands, pp 125–140

    Google Scholar 

  38. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PAD, Kampfer P, Maiden MCJ, Nesme X, Rossello-Mora R, Swings J, Truper HG, Vauterin L, Ward AC, Whitman WB (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047

    Article  PubMed  CAS  Google Scholar 

  39. Sudhir K, Koichiro T, Masatoshi N (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150

    Article  Google Scholar 

  40. Thies J, Rillig M (2009) Characteristics of biochar: biological properties. In: Lehmann J, Joseph S (eds) Biochar for environmental management. Earthscan, Dunstan House, London, UK

    Google Scholar 

  41. Thies J, Suzuki K (2003) Amazonian dark earths: biological measurements. In: Lehmann J, Kern D, Glaser B, Woods W (eds) Amazonian dark earths: origin, properties, management. Kluwer Academic, The Netherlands, pp 287–332

    Google Scholar 

  42. Vinuesa P, Rademaker JLW, de Bruijn FJ, Werner D (1998) Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S–23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol 64:2096–2104

    PubMed  CAS  Google Scholar 

  43. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Princeton University Press, NJ

    Google Scholar 

  44. Wardle DA, Zackrisson O, Nilsson MC (1998) The charcoal effect in boreal forests: mechanisms and ecological consequences. Oecologia 115:419–426

    Article  Google Scholar 

  45. Wawrik B, Kerkhof L, Kukor J, Zylstra G (2005) Effect of different carbon sources on community composition of bacterial enrichments from soil. Appl Environ Microbiol 71:6776–6783

    Article  PubMed  CAS  Google Scholar 

  46. Woomer P, Bennett J, Yost R (1990) Overcoming the inflexibility of most-probable-number procedures. Agron J 82:349–353

    Article  Google Scholar 

  47. Yin B, Crowley D, Sparovek G, De Melo WJ, Borneman J (2000) Bacterial functional redundancy along a soil reclamation gradient. Appl Environ Microbiol 66:4361–4365

    Article  PubMed  CAS  Google Scholar 

  48. Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci U S A 99:15681–15686

    Article  PubMed  CAS  Google Scholar 

  49. Zhou JZ, Xia BC, Treves DS, Wu LY, Marsh TL, O'Neill RV, Palumbo AV, Tiedje JM (2002) Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol 68:326–334

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Division of Environmental Biology of the National Science Foundation under contract no. DEB-0425995. The authors acknowledge the support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico, the Fundação de Amparo à Pesquisa do Estado de São Paulo, and the insight and advice of Daniel Buckley, Cornell University, Ithaca, NY, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Thies.

Additional information

The author J. Peterson is already deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, B., Grossman, J., Tsai, M.T. et al. Bacterial Community Composition in Brazilian Anthrosols and Adjacent Soils Characterized Using Culturing and Molecular Identification. Microb Ecol 58, 23–35 (2009). https://doi.org/10.1007/s00248-009-9515-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-009-9515-y

Keywords

Navigation