Skip to main content
Log in

Role of Plants in the Vegetative and Reproductive Growth of Saprobic Basidiomycetous Ground Fungi

  • Original Article
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Non-symbiotic microorganisms engineered or expensively selected to degrade xenobiotic hydrocarbons or modify heavy-metal uptake of plants in soil remediations die back after their introduction into the target soils. Mycelia of saprobic basidiomycetes were therefore inoculated into soil samples of 1 l in glass vessels to record mycelial growth and reproduction in the immediate rhizosphere of up to 11 herbaceous plant species, or to study their responses to the separate volatiles from whole plant swards or their root balls whose emanations had been collected in 1.5-l plastic bags fixed to the glass vessels. Excess CO2 was controlled with NaOH solution. Volatiles from root balls of parsley and pea but not wheat, from unplanted soils, from the fungus-permeated, unplanted substrate soil itself, and from the rooting soil of whole wheat sward increased mycelial densities in Clitocybe sp. more than in Agaricus macrocarpus and indicated thus a higher nutrient state of the mycelia. Organic volatiles proved therefore to be a significant carbon source for certain basidiomycetes in poor natural soils. The contemporary decline in the number of basidiocarp initials to 0 to 36% in both fungi relative to the unplanted and aerated controls was caused by volatiles from rooted and unplanted soil and pointed thus to their ecological role as antibiotics, fumigants, toxins, and hormonal compounds. Aqueous extracts from root balls of wheat stimulated mycelial density and fruiting in A. macrocarpus contemporarily because of their contents in soil-derived macronutrients. They suppressed once more fruiting in the more sensitive Clitocybe sp. by active agents in the aqueous phase. Within plant rhizospheres, densities of Clitocybe sp. mycelia were stimulated in the presence of alfalfa, carrot, red clover, ryegrass, and spinach, whereas those of A. macrocarpus were halved by 7 of 10 plant species including alfalfa, red clover, ryegrass, and spinach. Mycelia of A. macrocarpus may thereby have responded to differences in concentration and composition of volatile compounds. The contemporary repression of fruiting in both fungi and in nearly all treatments was not due to plant competition for macronutrients. Mycelia of basidiomycetes over-compensated for losses in macronutrients to the plant by decomposing soil matrix constituents. It is concluded that organic volatiles emitted by several plant organs and natural soils improved the nutritional state of A. macrocarpus and Clitocybe sp. but not of Agaricus bisporus mycelia and could therefore help establish certain ground fungi in the field. The contemporary and general suppression of fruiting by constituents of the gaseous (and liquid) phase in all fungi examined suggests interference with basic physiological processes and recommends an urgent re-examination of the degradative ability of basidiomycetes in the presence of volatiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Afifi AF (1976) Volatile and gaseous exudates of either germinating seeds or roots of okra plant in relation to okra wilt disease, caused by some Fusarium species. Zbl Bakt II 131:555–564

    CAS  Google Scholar 

  2. Baldi F, Minacci A, Pepi M, Scozzafava A (2001) Gel sequestration of heavy metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiol Ecol 36:169–174

    Article  PubMed  CAS  Google Scholar 

  3. Barbieri E, Gioacchini AM, Zambonelli A, Bertini L, Stocchi V (2005) Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun Mass Spectrom 19:3411–3415

    Article  PubMed  CAS  Google Scholar 

  4. Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, Beauchemin KA (2008) A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol (in press)

  5. Bending GD, Lincoln SD (1999) Characterisation of volatile sulphur-containing compounds produced during decomposition of Brassica juncea tissues in soil. Soil Biol Biochem 31:695–703

    Article  CAS  Google Scholar 

  6. Bennett RA, Lynch JM (1981) Bacterial growth and development in the rhizosphere of gnotobiotic cereal plants. J Gen Microbiol 125:95–102

    Google Scholar 

  7. Blum U, Shafer SR, Lehman ME (1999) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  8. Carney KM, Matson PA (2006) The influence of tropical plant diversity and composition on soil microbial communities. Microb Ecol 52:226–238

    Article  PubMed  Google Scholar 

  9. Chang S-T, Miles PG (2004) Mushrooms, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  10. Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  PubMed  CAS  Google Scholar 

  11. Cromack K, Sollins P, Graustein WC, Speidel K, Todd AW, Spycher G, Li CY, Todd RL (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungus Hysterangium crassum. Soil Biol Biochem 11:463–468

    Article  CAS  Google Scholar 

  12. Edwards PJ (1988) Effects of the fairy ring fungus Agaricus arvensis on nutrient availability in grassland. New Phytol 110:377–381

    Article  Google Scholar 

  13. Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121

    Article  PubMed  CAS  Google Scholar 

  14. Fischer G, Schwalbe R, Möller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810

    Article  PubMed  CAS  Google Scholar 

  15. Fisher RF (1979) Allelopathy. In: Horsfall JG, Cowling EB (eds) Plant disease, IV. How pathogens induce disease. Academic, New York, pp 313–330

    Google Scholar 

  16. Fries N (1973) Effects of volatile organic compounds on the growth and development of fungi. Trans Brit Mycol Soc 60:1–21

    CAS  Google Scholar 

  17. Gilbert RG, Menzies JD, Griebel GE (1969) The influence of volatiles from alfalfa upon growth and survival of soil microorganisms. Phytopathol 59:992–995

    CAS  Google Scholar 

  18. Gramss G (1978) Der Anbau von Speisepilzen. In: Michael E, Hennig E, Kreisel H (eds) Handbuch für Pilzfreunde, vol. 1, 3rd edn. Fischer, Jena, pp 84–114

    Google Scholar 

  19. Gramss G (1981) Mycelial establishment and fruiting of soil-inhabiting mushrooms in natural, steamed, and plant-occupied soil samples. Mushroom Sci XI Part II:183–198

    Google Scholar 

  20. Gramss G (1983) Erfahrungen mit neuen Kulturpilzen. V. Lepista nuda und Agaricus porphyrizon in modifizierten Ökosystemen. Der Champignon 258:22–31

    Google Scholar 

  21. Gramss G (1985) Approach to the nature of volatile compounds that dominate the ecological niche of basidiomycetous ground fungi in the edaphosphere of grassland. Zbl Mikrobiol 140:597–606

    Google Scholar 

  22. Gramss G (1987) The influence of the concomitant microflora on establishment and dieback of decay fungi in standing timber. J Phytopathol 120:205–215

    Article  Google Scholar 

  23. Gramss G (2000) Degradation of aromatic xenobiotics in aerated soils by enzyme systems of microorganisms and plants. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U (eds) Bioremediation of contaminated soils. Marcel Dekker, Inc., New York, pp 489–535

    Google Scholar 

  24. Gramss G, Bergmann H (2007) Microbial competition, lack in macronutrients, and acidity as main obstacles to the transfer of basidiomycetous ground fungi into (organically or heavy-metal) contaminated soils. J Basic Microbiol 47:309–316

    Article  PubMed  CAS  Google Scholar 

  25. Gramss G, Büchel G, Bergmann H (2007) Impact of non-symbiotic fungi on the solubility of major plant nutrients and heavy metals and on their uptake by Chinese cabbage (Brassica chinensis L.) from metalliferous soil. Proc 6th Symp Remediation Jena, 4–5 Oct, 2007, Friedich-Schiller-Univ, Jena, p 36

  26. Gramss G, Kirsche B, Voigt K-D, Günther Th, Fritsche W (1999) Conversion rates of five polycyclic aromatic hydrocarbons in liquid cultures of fifty-eight fungi and the concomitant production of oxidative enzymes. Mycol Res 103:1009–1018

    Article  CAS  Google Scholar 

  27. Gramss G, Voigt K-D Bergmann H (2005) Factors influencing water solubility and plant availability of mineral compounds in the tripartite fairy rings of Marasmius oreades (Bolt.: Fr.) Fr. J Basic Microbiol 45:41–54

    Article  PubMed  CAS  Google Scholar 

  28. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacterial strains, for cadmium, lead and nickel. Chemosphere 59:629–638

    Article  PubMed  CAS  Google Scholar 

  29. Hamilton-Kemp TR, Andersen RA (1986) Volatiles from winter wheat: Identification of additional compounds and effects of tissue source. Phytochemistry 25:241–243

    Article  CAS  Google Scholar 

  30. Hayes WA, Randle PE, Last FT (1969) The nature of the microbial stimulus affecting sporophore formation in Agaricus bisporus (Lange) Sing. Ann Appl Biol 64:177–187

    Article  Google Scholar 

  31. Hofrichter M, Ziegenhagen D, Vares T, Friedrich M, Jäger MG, Fritsche W, Hatakka A (1998) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of hydrogen peroxide. FEBS Lett 434:362–366

    Article  PubMed  CAS  Google Scholar 

  32. Humphris SN, Bruce A, Buultjens E, Wheatley RE (2002) The effects of volatile microbial secondary metabolites on protein synthesis in Serpula lacrymans. FEMS Microbiol Lett 210:215–219

    Article  PubMed  CAS  Google Scholar 

  33. Hutchinson SA (1973) Biological activities of volatile fungal metabolites. Annu Rev Phytopathol 11:223–246

    Article  CAS  Google Scholar 

  34. Isermeyer H (1952) Eine einfache Methode zur Bestimmung der Bodenatmung und der Karbonate im Boden. J Plant Nutr Soil Sci 56:26–30

    CAS  Google Scholar 

  35. Kothe E, Bergmann H, Büchel G (2005) Molecular mechanisms in bio-geo-interactions: From a case study to general mechanisms. Geochemistry 65(Supplement 1):7–27

    CAS  Google Scholar 

  36. Larkin RP, Griffin TS (2007) Control of soilborne potato diseases using Brassica green manures. Crop Prot 26:1067–1077

    Article  Google Scholar 

  37. Lelley J, Schmaus F (1976) Pilzanbau. Handbuch des Erwerbsgärtners 12, E. Ulmer, Stuttgart

  38. Leonowicz A, Cho N-S, Luterek J, Wilkolaza A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227

    Article  PubMed  CAS  Google Scholar 

  39. Long PE, Jacobs L (1969) Some observations on CO2 and sporophore initiation in the cultivated mushroom. Mushroom Sci VII:373–384

    Google Scholar 

  40. Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    Article  CAS  Google Scholar 

  41. Mazur FF (1961) Vlijanie različnych factorov na rezultaty bioispytanij antiseptirovannoj drevesiny. Trudy Inst Lesochoz Probl i Chimii Drevesiny AN Litv SSR 23:123–136

    Google Scholar 

  42. McDougall BM (1970) Movement of C14-photosynthate into the roots of wheat seedlings and exudation of C14 from intact roots. New Phytol 69:37–46

    Article  CAS  Google Scholar 

  43. Norrman J (1968) Morphogenetic effects of some volatile organic compounds on Pestalotia rhododendria. Arch Microbiol 61:128–142

    CAS  Google Scholar 

  44. O’Donoghue DC (1963) New light on fruit-body initiation. Mushroom Sci 5:247–249

    Google Scholar 

  45. Owens LD, Gilbert RG, Griebel GE, Menzies JD (1969) Identification of plant volatiles that stimulate microbial respiration and growth in soil. Phytopathol 59:1468–1472

    CAS  Google Scholar 

  46. Parkinson D (1965) The development of fungi in the root region of crop plants. In: Macura J, Vančura V (eds) Plant microbes relationships. Czechoslovakia Academy Science, Prague, pp 69–75

    Google Scholar 

  47. Pierucci P, Porazzi E, Pardo Martinez M, Adani F, Carati C, Rubino FM, Colombi A, Calcaterra E, Benfenati E (2005) Volatile organic compounds produced during the aerobic biological processing of municipal solid waste in a pilot plant. Chemosphere 59:423–430

    Article  PubMed  CAS  Google Scholar 

  48. Poppe JA (1970/71) Natuurstudie en vergelijkende reinkultuur van obligaat en fakultatief grasbewonende Psalliota’s, University of Gent, Thesis

  49. Rice A (1984) Allelopathy, 2nd edn. Acad Press, Orlando

    Google Scholar 

  50. Robinson PM, Park D (1966) Volatile inhibitors of spore germination produced by fungi. Trans Brit Mycol Soc 49:639–649

    Article  CAS  Google Scholar 

  51. Romeo JT (2000) Raising the beam: Moving beyond phytotoxicity. J Chem Ecol 26:2011–2014

    Article  CAS  Google Scholar 

  52. Schachtschabel P, Blume H-P, Brümmer G, Hartge KH, Schwertmann U (1998) Lehrbuch der Bodenkunde, 14th edn. Enke, Stuttgart

    Google Scholar 

  53. Scheibner K (1998) Degradation of 2,4,6-trinitrotoluol by fungi with emphasis on ligninolytic basidiomycetes and the manganese-peroxidase-system, University of Jena, PhD Thesis

  54. Schinner F, Öhlinger R, Kandeler E, Margesin R (1993) Bodenbiologische Arbeitsmethoden, 2nd edn. Springer, Berlin

    Google Scholar 

  55. Sikkema J, DeBont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–222

    PubMed  CAS  Google Scholar 

  56. Staley BF, Xu F, Cowie SJ, Barlaz MA, Hater GR (2006) Release of trace organic compounds during the decomposition of municipal solid waste components. Environ Sci Technol 40:5984–5991

    Article  PubMed  CAS  Google Scholar 

  57. Tschierpe HJ, Sinden JW (1965) Über leicht flüchtige Produkte des aeroben und anaeroben Stoffwechsels des Kulturchampignons, Agaricus campestris var. bisporus (L.) Lge. Arch Microbiol 52:231–241

    CAS  Google Scholar 

  58. Turner EM, Wright M, Ward T, Osborne DJ (1975) Production of ethylene and other volatiles and changes in cellulose and laccase activities during the life cycle of the cultivated mushroom, Agaricus bisporus. J Gen Microbiol 91:167–176

    PubMed  CAS  Google Scholar 

  59. Van der Lelie D (1998) Biological interactions: The role of soil bacteria in the bioremediation of the heavy metal-polluted soils. In: Vangronsveld J, Cunningham SD (eds) Metal-contaminated soils: In situ inactivation and phytorestoration. Springer, Berlin, pp 31–50

    Google Scholar 

  60. Vančura V, Hovadík A (1965) Composition of root exudates in the course of plant development. In: Macura J, Vančura V (eds) Plant microbes relationships. Symposium Prague 1963, Prague, pp 21–25

  61. Wackett LP, Sadowsky MJ, Martinez B, Saphir N (2002) Biodegradation of atrazine and related s-triazine compounds: from enzymes to field studies. Appl Microbiol Biotechnol 58:39–45

    Article  PubMed  CAS  Google Scholar 

  62. Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  PubMed  CAS  Google Scholar 

  63. Wilkins K, Larsen K, Simkus M (2000) Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446

    Article  PubMed  CAS  Google Scholar 

  64. Wright MS, Greene-McDowelle DM, Zeringue HJ Jr, Bhatnagar D, Cleveland TE (2000) Effects of volatile aldehydes from Aspergillus-resistant varieties of corn on Aspergillus parasiticus growth and aflatoxin biosynthesis. Toxicon 38:1215–1223

    Article  PubMed  CAS  Google Scholar 

  65. Zeringue HJ Jr, McCormick SP (1990) Aflatoxin production in cultures of Aspergillus flavus incubated in atmospheres containing selected cotton leaf-derived volatiles. Toxicon 28:445–448

    Article  PubMed  CAS  Google Scholar 

  66. Zhang C, Bennett GN (2005) Biodegradation of xenobiotics by anaerobic bacteria. Appl Microbiol Biotechnol 67:600–618

    Article  PubMed  CAS  Google Scholar 

  67. Zou C-S, Mo M-H, Gu Y-Q, Zhou J-P, Zhang K-Q (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biol Biochem 39:2371–2379

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Gramss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gramss, G., Bergmann, H. Role of Plants in the Vegetative and Reproductive Growth of Saprobic Basidiomycetous Ground Fungi. Microb Ecol 56, 660–670 (2008). https://doi.org/10.1007/s00248-008-9385-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-008-9385-8

Keywords

Navigation